曲線 f(x)=e3x在點(diǎn)(0,1)處的切線方程為
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:由導(dǎo)數(shù)的幾何意義可知曲線y=f(x)在點(diǎn)(0,f(0))處的切線斜率k=f′(0),從而可求切線方程
解答: 解:∵f(x)=e3x,
∴f′(x)=3e3x,
∴f′(0)=3,
∴曲線 f(x)=e3x在點(diǎn)(0,1)處的切線方程為y-1=3(x-0),即3x-y+1=0.
故答案為:3x-y+1=0.
點(diǎn)評:本題主要考查導(dǎo)數(shù)的幾何意義:導(dǎo)數(shù)在某點(diǎn)的切線的斜率即為改點(diǎn)的導(dǎo)數(shù)值的應(yīng)用,屬于基本概念的簡單應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3sin(ωx+φ)(ω>0,0<φ<
π
2
)的最小正周期為π,且其圖象經(jīng)過點(diǎn)(
π
3
,0).
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=f(
x
2
+
π
12
),α,β∈(0,π),且g(α)=1,g(β)=
3
2
4
,求g(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC的三個(gè)內(nèi)角分別為A,B,C,cosA=
1
3
,cosB=
2
2
3
.CD是∠ACB的角平分線.
(1)求角C的大;
(2)當(dāng)CD=8
2
-4,求AC,BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為T.其范圍為[0,10],分別有五個(gè)級別:T∈[0,2)暢通;T∈[2,4)基本暢通; T∈[4,6)輕度擁堵; T∈[6,8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶,晚高峰時(shí)段(T≥2),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的部分直方圖如圖所示.
(Ⅰ)請補(bǔ)全直方圖,并求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶侣范胃饔卸嗌賯(gè)?
(Ⅱ)用分層抽樣的方法從交通指數(shù)在[4,6),[6,8),[8,l0]的路段中共抽取6個(gè)路段,求依次抽取的三個(gè)級別路段的個(gè)數(shù);
(Ⅲ)從(Ⅱ)中抽出的6個(gè)路段中任取2個(gè),求至少一個(gè)路段為輕度擁堵的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x3+x2-1在點(diǎn)P(-1,-1)處的切線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,y=f(x)是可導(dǎo)函數(shù),直線l是曲線y=f(x)在x=4處的切線,令g(x)=
f(x)
x
,則g′(4)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的定義域?yàn)镽,若存在常數(shù)M>0,使|f(x)|≤M|x|對一切實(shí)數(shù)x均成立,則稱為“有界泛函”.現(xiàn)在給出如下5個(gè)函數(shù):
①f(x)=x2;   
f(x)=
x
x2+x+1
;  
③f(x)=sinx;  
④y=xcosx;
⑤f(x)是R上的奇函數(shù),且滿足對一切x1,x2∈R,均有|f(x1)-f(x2)|≤|x1-x2|.
其中屬于“有界泛函”的函數(shù)是
 
(填上所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖中是一個(gè)算法流程圖,則輸出的n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2(x-1)sinπx-1(-2≤x≤4)的所有零點(diǎn)之和等于
 

查看答案和解析>>

同步練習(xí)冊答案