已知向量
p
=(sinx,cosx+sinx),
q
=(2cosx,cosx-sinx),x∈R,設(shè)函數(shù)f(x)=
p
q

(I)求f(
π
3
)
的值及函數(shù)f(x)的最大值;
(II)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
分析:(1)由已知中向量
p
=(sinx,cosx+sinx),
q
=(2cosx,cosx-sinx),x∈R,函數(shù)f(x)=
p
q
.我們根據(jù)平面向量數(shù)量積的運(yùn)算法則,我們易求出函數(shù)f(x)的解析式,再結(jié)合正弦型函數(shù)的性質(zhì),我們即可求出求f(
π
3
)
的值及函數(shù)f(x)的最大值;
(2)由(1)所得的f(x)的解析式,我們結(jié)合三角函數(shù)求值域的方法,構(gòu)造關(guān)于相位ωx+φ的不等式組,求出滿足條件的自變量的取值范圍,即可得到函數(shù)f(x)的單調(diào)遞增區(qū)間.
解答:解:(I)∵
p
=(sinx,cosx+sinx),
q
=(2cosx,cosx-sinx),
∴f(x)=
p
q

=(sinx,cosx+sinx)•(2cosx,cosx-sinx)
=2sinxcosx+cos2x-sin2x
=sin2x+cos2x
=
2
sin(2x+
π
4
)

f(
π
3
)
=
3
-1
2

∴函數(shù)f(x)的最大值為
2

當(dāng)且僅當(dāng)x=
π
8
+kπ
(k∈Z)時
函數(shù)f(x)取得最大值為
2

(II)由2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
(k∈Z),
kπ-
8
≤x≤kπ+
π
8
(k∈Z).
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ-
8
,kπ+
π
8
](k∈Z)
點(diǎn)評:函數(shù)y=Asin(ωx+φ)(A>0,ω>0)中,最大值或最小值由A確定,由周期由ω決定,即要求三角函數(shù)的周期與最值一般是要將其函數(shù)的解析式化為正弦型函數(shù),再根據(jù)最大值為|A|,最小值為-|A|,周期T=
ω
進(jìn)行求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(1,1)
,向量
n
與向量
m
夾角為
3
4
π
,且
m
n
=-1

(1)若向量
n
與向量
q
=(1,0)的夾角為
π
2
,向量
p
=(cosA,2cos2
C
2
)
,其中A,C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列,試求|
n
+
p
|的取值范圍.
(2)若A、B、C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列,A≤B≤C,設(shè)f(A)=sin2A-2(sinA+cosA)+a2,f(A)的最大值為5-2
2
,關(guān)于x的方程sin(ax+
π
3
)=
m
2
(a>0)
[0,
π
2
]
上有相異實(shí)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(1,1),
q
=(1,0),<
n
,
p
>=
π
2
m
n
=-1;若△ABC的內(nèi)角A,B,C依次成等差數(shù)列,且A≤B≤C;
(1)若關(guān)于x的方程sin(2x+
π
3
)=
m
2
在[0,B]上有相異實(shí)根,求實(shí)數(shù)m的取值范圍;
(2)若向量
p
=(cosA,2cos2
C
2
),試求|
n
+
p
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(1,cosωx),
n
=(sinωx,
3
)
(ω>0),函數(shù)f(x)=
m
n
,且f(x)圖象上一個最高點(diǎn)為P(
π
12
,2)
,與P最近的一個最低點(diǎn)的坐標(biāo)為(
12
,-2)

(1)求函數(shù)f(x)的解析式;
(2)設(shè)a為常數(shù),判斷方程f(x)=a在區(qū)間[0,
π
2
]
上的解的個數(shù);
(3)在銳角△ABC中,若cos(
π
3
-B)=1
,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆江西省南昌市高三第一次模擬測試卷理科數(shù)學(xué)試卷 題型:填空題

已知向量p=(-cos 2x,a),q=(a,2-sin 2x),函數(shù)f(x)=p·q-5(aR,a≠0)

(1)求函數(shù)f(x)(xR)的值域;

(2)當(dāng)a=2時,若對任意的tR,函數(shù)yf(x),x∈(t,tb]的圖像與直線y=-1有且僅有兩個不同的交點(diǎn),試確定b的值(不必證明),并求函數(shù)yf(x)的在[0,b]上單調(diào)遞增區(qū)間.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西省南昌市2011-2012學(xué)年高三下學(xué)期第一次模擬測試卷(數(shù)學(xué)理) 題型:解答題

 

已知向量p=(-cos 2x,a),q=(a,2-sin 2x),函數(shù)f(x)=p·q-5(aR,a≠0)

(1)求函數(shù)f(x)(xR)的值域;

(2)當(dāng)a=2時,若對任意的tR,函數(shù)yf(x),x∈(ttb]的圖像與直線y=-1有且僅有兩個不同的交點(diǎn),試確定b的值(不必證明),并求函數(shù)yf(x)的在[0,b]上單調(diào)遞增區(qū)間.

 

 

 

查看答案和解析>>

同步練習(xí)冊答案