下列函數(shù)中,在其定義域中,既是奇函數(shù)又是減函數(shù)的是(  )
A、f(x)=
-x
B、f(x)=2-x-2x
C、f(x)=-tanx
D、f(x)=
1
x
考點:函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的判斷與證明
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:利用奇偶函數(shù)的概念與函數(shù)單調(diào)性的概念對四個選項逐一判斷即可.
解答: 解:A,∵f(x)=
-x
的定義域為{x|x≤0},不關(guān)于原點對稱,不是奇函數(shù),故A錯誤;
B,∵f(x)=2-x-2x,∴f(-x)=2x-2-x=-(2-x-2x)=-f(x),∴f(x)=2-x-2x是奇函數(shù);
C,∵奇函數(shù)y=-tanx在每一個區(qū)間(kπ-
π
2
,kπ+
π
2
)(k∈Z)是減函數(shù),并不是定義域上的減函數(shù),故C錯誤;
D,y=
1
x
在(-∞,0),(0,+∞)上單調(diào)遞減,并不是在(-∞,0)∪(0,+∞)上單調(diào)遞減,故D錯誤;
綜上所述,B正確.
故選:B.
點評:本題考查函數(shù)奇偶性與函數(shù)單調(diào)性的判斷,考查分析運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對實數(shù)a,b定義運(yùn)算“?”:a?b=
a…a-b≤1
b…a-b>1
,設(shè)函數(shù)f(x)=(x2-2)?(x-1),x∈R,若函數(shù)y=f(x)-c的圖象與x軸恰有兩個公共點,則實數(shù)c的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=lg(2ax2+2x+1)(a>0)的值域為R,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2在[0,1]上的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=-
2a
b
ln(x+1)的圖象在x=1處的切線l過點(0,-
1
b
),并且l與圓x2+y2=
1
10
相離,則點(a,b)與圓x2+y2=10的位置關(guān)系是( 。
A、在圓內(nèi)B、在圓外
C、在圓上D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈(-
π
2
,
π
2
)
,則sinx,tanx與x的大小關(guān)系是( 。
A、tanx≥sinx≥x
B、tanx≥x≥sinx
C、大小關(guān)系不確定
D、|tanx|≥|x|≥|sinx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)相等的是(  )
A、f(x)=
x2-1
x-1
 與g(x)=x+1
B、f(x)=
-2x3
 與g(x)=x•
-2x
C、f(x)=2x+1 與g(x)=
2x2+x
x
D、f(x)=|x2-1|與g(t)=
(t2-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠B=
π
3
,AB=8,BC=5,則△ABC外接圓的面積為( 。
A、
49π
3
B、16π
C、
47π
3
D、15π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2與y=kx(k>0)的圖象所圍成的陰影部分(如圖所示)的面積為
4
3
,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案