【題目】為了解某班學(xué)生喜歡數(shù)學(xué)是否與性別有關(guān),對(duì)本班人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表,已知在全部人中隨機(jī)抽取人抽到喜歡數(shù)學(xué)的學(xué)生的概率為.

喜歡數(shù)學(xué)

不喜歡數(shù)學(xué)

合計(jì)

男生

女生

合計(jì)

1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(不用寫計(jì)算過(guò)程);

2)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為喜歡數(shù)學(xué)與性別有關(guān)?說(shuō)明你的理由;

3)現(xiàn)從女生中抽取人進(jìn)一步調(diào)查,設(shè)其中喜歡數(shù)學(xué)的女生人數(shù)為,求的分布列與期望.

下面的臨界表供參考:

(參考公式:,其中

【答案】1)列聯(lián)表見解析;(2)能,理由見解析;(3)分布列見解析,.

【解析】

1)由題意可知,全部人中喜歡數(shù)學(xué)的學(xué)生人數(shù)為,據(jù)此可完善列聯(lián)表;

2)根據(jù)列聯(lián)表中的數(shù)據(jù)計(jì)算出的觀測(cè)值,結(jié)合臨界值表可得出結(jié)論;

3)由題意可知,隨機(jī)變量的可能取值有、、,利用超幾何分布可得出隨機(jī)變量的概率分布列,并由此可計(jì)算出隨機(jī)變量的數(shù)學(xué)期望值.

1)列聯(lián)表補(bǔ)充如下:

喜歡數(shù)學(xué)

不喜歡數(shù)學(xué)

合計(jì)

男生

女生

合計(jì)

2,

在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為喜歡數(shù)學(xué)與性別有關(guān);

3)喜歡數(shù)學(xué)的女生人數(shù)的可能取值為、,

其概率分別為,,

,

故隨機(jī)變量的分布列為:

的期望值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】山東省于2015年設(shè)立了水下考古研究中心,以此推動(dòng)全省的水下考古、水下文化遺產(chǎn)保護(hù)等工作;水下考古研究中心工作站,分別設(shè)在位于劉公島的中國(guó)甲午戰(zhàn)爭(zhēng)博物院和威海市博物館。為對(duì)劉公島周邊海域水底情況進(jìn)行詳細(xì)了解,然后再選擇合適的時(shí)機(jī)下水探摸、打撈,省水下考古中心在一次水下考古活動(dòng)中,某一潛水員需潛水米到水底進(jìn)行考古作業(yè),其用氧量包含以下三個(gè)方面:

①下潛平均速度為米/分鐘,每分鐘的用氧量為升;

②水底作業(yè)時(shí)間范圍是最少10分鐘最多20分鐘,每分鐘用氧量為0.4升;

③返回水面時(shí),平均速度為米/分鐘,每分鐘用氧量為0.32升.

潛水員在此次考古活動(dòng)中的總用氧量為升.

(Ⅰ)如果水底作業(yè)時(shí)間是分鐘,將表示為的函數(shù);

(Ⅱ)若,水底作業(yè)時(shí)間為20分鐘,求總用氧量的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P是拋物線C:上任意一點(diǎn),過(guò)點(diǎn)P作直線PH⊥x軸,點(diǎn)H為垂足.點(diǎn)M是直線PH上一點(diǎn),且在拋物線的內(nèi)部,直線l過(guò)點(diǎn)M交拋物線C于A、B兩點(diǎn),且點(diǎn)M是線段AB的中點(diǎn).

(1)證明:直線l平行于拋物線C在點(diǎn)P處切線;

(2)若|PM|=, 當(dāng)點(diǎn)P在拋物線C上運(yùn)動(dòng)時(shí),△PAB的面積如何變化?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方形的邊長(zhǎng)為,已知,將沿邊折起,折起后點(diǎn)在平面上的射影為點(diǎn),則翻折后的幾何體中有如下描述:①所成角的正切值為;②;③;④平面平面,其中正確的命題序號(hào)為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,ECD的中點(diǎn).

(Ⅰ)求證:BD⊥平面PAC;

(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;

(Ⅲ)棱PB上是否存在點(diǎn)F,使得CF∥平面PAE?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱臺(tái)中,點(diǎn)上,且,點(diǎn)內(nèi)(含邊界)的一個(gè)動(dòng)點(diǎn),且有平面平面,則動(dòng)點(diǎn)的軌跡是( )

A. 平面B. 直線C. 線段,但只含1個(gè)端點(diǎn)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的左焦點(diǎn)為,過(guò)點(diǎn)的直線交橢圓于,兩點(diǎn),的最大值是的最小值是,且滿足.

(1)求橢圓的離心率;

(2)設(shè)線段的中點(diǎn)為,線段的垂直平分線與軸、軸分別交于兩點(diǎn),是坐標(biāo)原點(diǎn),記的面積為,的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓臺(tái)的上、下底面半徑分別為,母線長(zhǎng),從圓臺(tái)母線的中點(diǎn)拉一條繩子繞圓臺(tái)側(cè)面轉(zhuǎn)到點(diǎn)在下底面,求:

1繩子的最短長(zhǎng)度;

2在繩子最短時(shí),上底圓周上的點(diǎn)到繩子的最短距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一輛汽車從市出發(fā)沿海岸一條筆直公路以每小時(shí)的速度向東均速行駛,汽車開動(dòng)時(shí),在市南偏東方向距且與海岸距離為的海上處有一快艇與汽車同時(shí)出發(fā),要把一份稿件交給這汽車的司機(jī).

1)快艇至少以多大的速度行駛才能把稿件送到司機(jī)手中?

2)在(1)的條件下,求快艇以最小速度行駛時(shí)的行駛方向與所成的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案