【題目】

已知公比為整數(shù)的正項(xiàng)等比數(shù)列滿足:

1)求數(shù)列的通項(xiàng)公式;

2)令,求數(shù)列的前項(xiàng)和

【答案】(1) .

(2) .

【解析】試題分析:第一問根據(jù)等比數(shù)列的通項(xiàng)公式以及性質(zhì),結(jié)合題的條件,轉(zhuǎn)化為關(guān)于首項(xiàng)和公比的等量關(guān)系式,從而求得結(jié)果;第二問利用錯(cuò)位相減法求和從而求得結(jié)果.

1)設(shè)等比數(shù)列的公比為,

,有可得,…………………1

可得,…………………2

兩式相除可得: ,…………………3

整理為: ,

,且為整數(shù),可解得,故…………………5

數(shù)列的通項(xiàng)公式為…………………7

2)由,

,…………………9

兩式作差有: …………………11

,…………………14

…………………15

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,若f(a)=f(b)=f(c)=f(d),其中a,b,c,d互不相等,則對(duì)于命題p:abcd∈(0,1)和命題q:a+b+c+d∈[e+e﹣1﹣2,e2+e﹣2﹣2)真假的判斷,正確的是( )
A.p假q真
B.p假q假
C.p真q真
D.p真q假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x+2)2(x>0).
(1)若f(x)是(0,+∞)的單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng) 時(shí),求證:函數(shù)f(x)有最小值,并求函數(shù)f(x)最小值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+m與函數(shù) 的圖象上至少存在一對(duì)關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)m的取值范圍是(
A.
B.
C.
D.[2﹣ln2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的一系列對(duì)應(yīng)值如下表:

-1

1

3

1

-1

1

3

(1)根據(jù)表格提供的數(shù)據(jù)畫出函數(shù)的圖像并求出函數(shù)解析式;

(2)根據(jù)(1)的結(jié)果,若函數(shù)的周期為,當(dāng)時(shí),方程恰有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列、,其中, ,數(shù)列滿足,數(shù)列滿足

(1)求數(shù)列,的通項(xiàng)公式;

(2)是否存在自然數(shù),使得對(duì)于任意恒成立?若存在,求出的最小值;

(3)若數(shù)列滿足,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)其中,記函數(shù)的定義域?yàn)?/span>.

(1)求函數(shù)的定義域;

(2)若函數(shù)的最大值為2,求的值;

(3)若對(duì)于內(nèi)的任意實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大指出中國(guó)的電動(dòng)汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國(guó)正在大力實(shí)施一項(xiàng)將重塑全球汽車行業(yè)的計(jì)劃.年某企業(yè)計(jì)劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場(chǎng)分析,全年需投入固定成本萬(wàn)元,每生產(chǎn)(百輛),需另投入成本萬(wàn)元,且.由市場(chǎng)調(diào)研知,每輛車售價(jià)萬(wàn)元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.

(1)求出2018年的利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷售額-成本)

(2)2018年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=[x3+3x2+(a+6)x+6﹣a]ex在區(qū)間(2,4)上存在極大值點(diǎn),則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,﹣32)
B.(﹣∞,﹣27)
C.(﹣32,﹣27)
D.(﹣32,﹣27]

查看答案和解析>>

同步練習(xí)冊(cè)答案