【題目】雙曲線=1(b∈N)的兩個焦點F1、F2,P為雙曲線上一點,|OP|5,|PF1|,|F1F2|,|PF2|成等比數(shù)列,則b2=_________.

【答案】1

【解析】

解:設F1(c,0)、F2(c,0)、P(x,y), |PF1|2+|PF2|2=2(|PO|2+|F1O|2)2(52+c2),

|PF1|2+|PF2|250+2c2, ∵|PF1|2+|PF2|2=(|PF1||PF2|)2+2|PF1|·|PF2|,

依雙曲線定義,有|PF1||PF2|="4," 依已知條件有|PF1|·|PF2|=|F1F2|2=4c2

∴16+8c250+2c2,∴c2, c2=4+b2,∴b2,∴b2="1. " 答案:1

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1),在等腰直角中,斜邊D的中點,將沿折疊得到如圖(2)所示的三棱錐,若三棱錐的外接球的半徑為,則_________.

圖(1 圖(2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某市公益志愿者的年齡分布情況,有關部門通過隨機抽樣,得到如圖1的頻率分布直方圖.

1)求a的值,并估計該市公益志愿者年齡的平均數(shù)(同一組中的數(shù)據用該組區(qū)間的中點值作代表);

2)根據世界衛(wèi)生組織確定新的年齡分段,青年是指年齡1544歲的年輕人.據統(tǒng)計,該市人口約為300萬人,其中公益志愿者約占總人口的40%.試根據直方圖估計該市青年公益志愿者的人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,直線.

(1)若直線與拋物線相切,求直線的方程;

(2)設,直線與拋物線交于不同的兩點,,若存在點,滿足,且線段互相平分(為原點),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】手機運動計步已經成為一種新時尚.某單位統(tǒng)計了職工一天行走步數(shù)(單位:百步),繪制出如下頻率分布直方圖:

1)求直方圖中a的值,并由頻率分布直方圖估計該單位職工一天步行數(shù)的中位數(shù);

2)若該單位有職工200人,試估計職工一天行走步數(shù)不大于13000的人數(shù);

3)在(2)的條件下,該單位從行走步數(shù)大于150003組職工中用分層抽樣的方法選取6人參加遠足拉練活動,再從6人中選取2人擔任領隊,求這兩人均來自區(qū)間(150,170]的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分別是橢圓的左、右焦點,過且斜率不為零的直線與橢圓交于兩點,的周長為

1)求橢圓的方程

2)是否存在直線,使得為等腰直角三角形?若存在,求出直線的方程;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示:湖面上甲、乙、丙三艘船沿著同一條直線航行,某一時刻,甲船在最前面的點處,乙船在中間點處,丙船在最后面的點處,且.一架無人機在空中的點處對它們進行數(shù)據測量,在同一時刻測得 .(船只與無人機的大小及其它因素忽略不計)

(1)求此時無人機到甲、丙兩船的距離之比;

(2)若此時甲、乙兩船相距100米,求無人機到丙船的距離.(精確到1米)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,,的中點,點在平面內的射影在線段上.

(1)求證:

(2)若是正三角形,求三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結論中正確的個數(shù)是( ).

①在中,若,則是等腰三角形;

②在中,若 ,則

③兩個向量共線的充要條件是存在實數(shù),使

④等差數(shù)列的前項和公式是常數(shù)項為0的二次函數(shù).

A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案