已知方程數(shù)學(xué)公式在x∈[0,nπ),(n∈N*)內(nèi)所有根的和記為an
(1)寫出an的表達(dá)式:(不要求嚴(yán)格的證明)  
(2)求Sn=a1+a2+…+an;
(3)設(shè)bn=(kn-5)π,若對任何n∈N*都有an≥bn,求實(shí)數(shù)k的取值范圍.

解:(1)解方程得(1分)
∴當(dāng)n=1時(shí),,此時(shí)(2分)
當(dāng)n=2時(shí),,
(3分)
依此類推:
(5分)
(2)
==
(9分)
(3)由an≥bn

∵n∈N*(11分)
設(shè)
易證f(n)在上單調(diào)遞減,在()上單調(diào)遞增.    (13分)
∵n∈N*
∴n=2,f(n)min=4
∴k≤4(15分)
分析:(1)通過方程的解,利用n=1,2,求出a1,a2,類比寫出an的表達(dá)式.(不要求嚴(yán)格的證明)  
(2)利用拆項(xiàng)法直接通過公式法與等差數(shù)列求和,求Sn=a1+a2+…+an的值.
(3)設(shè)bn=(kn-5)π,推出an≥bn的表達(dá)式,利用分離變量,通過基本不等式判斷函數(shù)的單調(diào)性,求出函數(shù)的最小值,即可求實(shí)數(shù)k的取值范圍.
點(diǎn)評:本題考查數(shù)列通項(xiàng)公式的猜想,數(shù)列求和的基本方法,恒成立問題的應(yīng)用,函數(shù)的單調(diào)性的應(yīng)用,考查轉(zhuǎn)化思想,分析問題解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
3
ax3-ax+a,g(x)=bx2-lnx,(a>0,b∈R)
,已知它們在x=1處的切線互相平行.
(1)求b的值;
(2)當(dāng)x>0時(shí),求證:x2-2lnx≥1;
(3)若函數(shù)F(x)=
f(x),(x≤0)
g(x),(x>0)
,且方程F(x)=a2有且僅有四個(gè)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)A(0,
2
)為圓心、1為半徑的圓相切,又知雙曲線C的一個(gè)焦點(diǎn)與點(diǎn)A關(guān)于直線y=x對稱.
(1)求雙曲線C的方程.
(2)設(shè)直線l:y=mx+1與雙曲線C的左支交于A,B兩點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•揭陽一模)已知方程
|sinx|
x
=k
在(0,+∞)有兩個(gè)不同的解α,β(α<β),則下面結(jié)論正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西省撫州一中08-09學(xué)年高二下學(xué)期第二次月考(理) 題型:解答題

 

已知函數(shù)在x = 0處取得極值0.

(1)求實(shí)數(shù)a,b的值;

(2)若關(guān)于x的方程,  在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;

(3)證明:對任意的正整數(shù)n>1,不等式 都成立.

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案