(2013•房山區(qū)二模)拋物線C:y2=2px的焦點(diǎn)坐標(biāo)為F(
1
2
,0)
,則拋物線C的方程為
y2=2x
y2=2x
,若點(diǎn)P在拋物線C上運(yùn)動,點(diǎn)Q在直線x+y+5=0上運(yùn)動,則|PQ|的最小值等于
9
2
4
9
2
4
分析:由y2=2px的焦點(diǎn)坐標(biāo)為F(
1
2
,0)
,得
p
2
=
1
2
,從而求得p值,設(shè)與直線x+y+5=0平行的拋物線的切線方程為x+y+m=0,直線x+y+5=0與切線距離即為|PQ|的最小值,聯(lián)立切線方程與拋物線方程消掉x得y的二次方程,令△=0可求得m值,從而得切線方程,根據(jù)兩點(diǎn)間距離公式即可求得答案.
解答:解:因?yàn)閥2=2px的焦點(diǎn)坐標(biāo)為F(
1
2
,0)
,
所以p>0,且
p
2
=
1
2
,解得p=1,
所以拋物線方程為y2=2x,
設(shè)與直線x+y+5=0平行的拋物線的切線方程為x+y+m=0,
x+y+m=0
y2=2x
得y2+2y+2m=0,
令△=0,即22-4×2m=0,解得m=
1
2

則切線方程為x+y+
1
2
=0,
兩平行線間的距離d=
|5-
1
2
|
2
=
9
2
4
,即為|PQ|的最小值.
故答案分別為:y2=2x,
9
2
4
點(diǎn)評:本題考查直線與圓錐曲線的位置關(guān)系、拋物線的性質(zhì),考查轉(zhuǎn)化思想,解決本題的關(guān)鍵把|PQ|的最小值轉(zhuǎn)化為直線與拋物線切線間的距離求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)二模)對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對稱中心,且拐點(diǎn)就是對稱中心.若f(x)=
1
3
x3-
1
2
x2+
1
6
x+1
,則該函數(shù)的對稱中心為
(
1
2
,1)
(
1
2
,1)
,計(jì)算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)
=
2012
2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)二模)已知函數(shù)f(x)=(x2+x-a)e
xa
(a>0).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x=-5時(shí),f(x)取得極值.
①若m≥-5,求函數(shù)f(x)在[m,m+1]上的最小值;
②求證:對任意x1,x2∈[-2,1],都有|f(x1)-f(x2)|≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)二模)一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的表面積為( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)二模)下列四個(gè)函數(shù)中,既是奇函數(shù)又在定義域上單調(diào)遞增的是( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)二模)已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,2Sn=an+1,則Sn=(  )

查看答案和解析>>

同步練習(xí)冊答案