在如圖所示的幾何體中,四邊形是正方形,⊥平面,、分別為、、的中點(diǎn),且.

(1)求證:平面⊥平面;
(2)求三棱錐與四棱錐的體積之比.

(1)主要證明平面 (2)

解析試題分析:解:(1)證明:∵平面,,
平面,
平面,∴,
為正方形,∴DC.
,∴平面.
中,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0e/3/ytoap.png" style="vertical-align:middle;" />分別為、的中點(diǎn),
,∴平面.
平面,∴平面平面.
(2)不妨設(shè),∵為正方形,∴,
又∵平面
所以.
由于平面,且
所以即為點(diǎn)到平面的距離,
三棱錐××2=.
所以.
考點(diǎn):平面與平面垂直的判定;棱柱、棱錐、棱臺(tái)的體積.
點(diǎn)評(píng):本題考查空間中的線面關(guān)系,考查線面垂直、面面垂直的判定及幾何體體積的計(jì)算,考查試圖能力和邏輯思維能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在如圖所示的幾何體中,平面平面,四邊形為平行四邊形,.

(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等邊三角形的邊長(zhǎng)為3,點(diǎn)、分別是邊上的點(diǎn),且滿足(如圖1).將△沿折起到△的位置,使二面角成直二面角,連結(jié)、 (如圖2).

(1)求證:平面;
(2)在線段上是否存在點(diǎn),使直線與平面所成的角為?若存在,求出的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,三棱柱的側(cè)棱與底面垂直,底面是等腰直角三角形,,側(cè)棱,分別是的中點(diǎn),點(diǎn)在平面上的射影是的垂心

(1)求證:
(2)求與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四邊形中(圖1),中點(diǎn)為,將圖1沿直線折起,使二面角(圖2)
 
(1)過(guò)作直線平面,且平面=,求的長(zhǎng)度。
(2)求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,在等腰梯形CDEF中,CB、DA是梯形的高,,,現(xiàn)將梯形沿CB、DA折起,使,得一簡(jiǎn)單組合體如圖2示,已知分別為的中點(diǎn).
   
圖1                              圖2
(1)求證:平面
(2)求證: ;
(3)當(dāng)多長(zhǎng)時(shí),平面與平面所成的銳二面角為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直棱柱ABC-中,D,E分別是AB,BB1的中點(diǎn),=AC=CB=AB.

(Ⅰ)證明: //平面;
(Ⅱ)求二面角D--E的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,

(I)求證
(II)設(shè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在如圖所示的幾何體中,四邊形是菱形,是矩形,平面⊥平面,,的中點(diǎn).

(Ⅰ) 求證://平面;
(Ⅱ) 在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案