Processing math: 100%
15.設(shè)△ABC的內(nèi)角A,B,C所對邊的長分別是a,b,c,且b=3,c=1,A=2B,則cosB的值為33

分析 利用正弦定理,二倍角公式結(jié)合已知可得a2sinBcosB=3sinB,整理得a=6cosB,由余弦定理可解得a的值,可求cosB的值.

解答 解:∵A=2B,asinA=sinB,b=3,c=1,
∴可得:a2sinBcosB=3sinB,可得:a=6cosB,
∴由余弦定理可得:a=6×a2+192a,
∴a=23
∴cosB=a6=33
故答案為:33

點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,二倍角公式在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若△ABC的兩個(gè)頂點(diǎn)B,C的坐標(biāo)分別是(-1,0)和(2,0),而頂點(diǎn)A在直線y=x上移動(dòng),則△ABC的重心G的軌跡方程是3x-3y-1=0(y≠0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(x)=ln(x+4x-a),若對任意的m∈R,均存在x0>0使得f(x0)=m,則實(shí)數(shù)a的取值范圍是(-∞,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)x,y滿足約束條件{1x+y31xy0且z=2x-y+a(a為常數(shù))的最大值為2,則實(shí)數(shù)a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)向量e1,e22π3夾角為的單位向量,若a=e1+2e2,則|a|=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}滿足a1=1,an+1n+1=ann.?dāng)?shù)列a1,a2,a1,a2,a3,…,an,…成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程是{x=1+12ty=32t(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:ρ=4cosθ.
(1)把直線l的參數(shù)方程化為極坐標(biāo)方程,把曲線C的極坐標(biāo)方程化為普通方程;
(2)已知點(diǎn)P(1,0),直線l與曲線C交于M、N兩點(diǎn),求|PM|•|PN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知定義在R上的二次函數(shù)f(x)為偶函數(shù),且滿足f(1)=6,f(3)=2.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[a,b]上值域?yàn)閇2a,2b],試求所有符合題意的[a,b].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=12sin(ωx+φ)(ω>0,0<φ<π)為偶函數(shù),點(diǎn)P,Q分別為函數(shù)y=f(x)圖象上相鄰的最高點(diǎn)和最低點(diǎn),且|PQ|=2
(1)求函數(shù)f(x)的解析式;
(2)在△ABC中,a,b,c分別為角A,B,C的對邊,已知a=1,b=2,f(Aπ)=34,求角C的大�。�

查看答案和解析>>

同步練習(xí)冊答案