【題目】執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為80,則判斷框內(nèi)應(yīng)填入(
A.n≤8?
B.n>8?
C.n≤7?
D.n>7?

【答案】D
【解析】解:模擬程序的運(yùn)行,可得 S=0,n=1,a=3
執(zhí)行循環(huán)體,S=3,a=5
不滿足條件,執(zhí)行循環(huán)體,n=2,S=8,a=7
不滿足條件,執(zhí)行循環(huán)體,n=3,S=15,a=9
不滿足條件,執(zhí)行循環(huán)體,n=4,S=24,a=11
不滿足條件,執(zhí)行循環(huán)體,n=5,S=35,a=13
不滿足條件,執(zhí)行循環(huán)體,n=6,S=48,a=15
不滿足條件,執(zhí)行循環(huán)體,n=7,S=63,a=17
不滿足條件,執(zhí)行循環(huán)體,n=8,S=80,a=19
由題意,此時(shí)滿足條件,退出循環(huán),輸出的S結(jié)果為80,
則判斷框內(nèi)應(yīng)填入n>7?
故選:D.
分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸入S的值,條件框內(nèi)的語句是決定是否結(jié)束循環(huán),模擬執(zhí)行程序即可得到答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某加工廠用某原料由車間加工出A產(chǎn)品,由乙車間加工出B產(chǎn)品.甲車間加工一箱原料需耗費(fèi)工時(shí)10小時(shí)可加工出7千克A產(chǎn)品,每千克A產(chǎn)品獲利40元.乙車間加工一箱原料需耗費(fèi)工時(shí)6小時(shí)可加工出4千克B產(chǎn)品,每千克B產(chǎn)品獲利50元.甲、乙兩車間每天功能完成至多70多箱原料的加工,每天甲、乙車間耗費(fèi)工時(shí)總和不得超過480小時(shí),甲、乙兩車間每天獲利最大的生產(chǎn)計(jì)劃為(
A.甲車間加工原料10箱,乙車間加工原料60箱
B.甲車間加工原料15箱,乙車間加工原料55箱
C.甲車間加工原料18箱,乙車間加工原料50箱
D.甲車間加工原料40箱,乙車間加工原料30箱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=1+x﹣ +…+ ,g(x)=1﹣x+ ﹣…﹣ ,設(shè)函數(shù)F(x)=f(x+4)g(x﹣5),且函數(shù)F(x)的零點(diǎn)均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),則b﹣a的最小值為(
A.9
B.10
C.11
D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E為AB的中點(diǎn),P為以A為圓心、AB為半徑的圓弧上的任意一點(diǎn),設(shè)向量 ,則λ+μ的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

(1)若函數(shù)是偶函數(shù),求實(shí)數(shù)的取值范圍;

(2)若函數(shù)且任意都有恒成立,求實(shí)數(shù)的取值范圍;

(3)若,求上的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}中,其前n項(xiàng)和為Sn , 且 ,等比數(shù)列{bn}中,其前n項(xiàng)和為Tn , 且 ,(n∈N*
(1)求an , bn
(2)求{anbn}的前n項(xiàng)和Mn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|. (Ⅰ)若不等式f(x)≤2的解集為[0,4],求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位.已知直線l的參數(shù)方程為 (t為參數(shù),0<α<π),曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ. (Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A、B兩點(diǎn),當(dāng)α變化時(shí),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且2asinB= b.
(1)求角A的大。
(2)若0<A< ,a=6,且△ABC的面積S= ,求△ABC的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案