【題目】要測(cè)量電視塔AB的高度,在C點(diǎn)測(cè)得塔頂?shù)难鼋鞘?5°,在D點(diǎn)測(cè)得塔頂?shù)难鼋鞘?0°,并測(cè)得水平面上的∠BCD=120°,CD=40m,則電視塔的高度是(
A.30m
B.40m
C. m
D. m

【答案】B
【解析】解:由題題意,設(shè)AB=x,則BD= x,BC=x 在△DBC中,∠BCD=120°,CD=40,
∴根據(jù)余弦定理,得BD2=BC2+CD2﹣2BCCDcos∠DCB
即:( x)2=(40)2+x2﹣2×40xcos120°
整理得x2﹣20x﹣800=0,解之得x=40或x=﹣20(舍)
即所求電視塔的高度為40米.
故選B.

設(shè)出AB=x,進(jìn)而根據(jù)題意將BD、DC用x來表示,然后在△DBC中利用余弦定理建立方程求得x,即可得到電視塔的高度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=2, cos2B+5cosB﹣ =0,且點(diǎn)D在線段BC上.
(1)若∠ADC= ,求AD的長;
(2)若BD=2DC, =4 ,求△ABD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ax+ ,且f(x)+f( )=0,其中a,b為常數(shù).
(1)若函數(shù)f(x)的圖象在x=1的切線經(jīng)過點(diǎn)(2,5),求函數(shù)的解析式;
(2)已知0<a<1,求證:f( )>0;
(3)當(dāng)f(x)存在三個(gè)不同的零點(diǎn)時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣1|﹣|2x+1|的最大值為m.
(Ⅰ)作出函數(shù)f(x)的圖象;
(Ⅱ)若a2+2c2+3b2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣alnx(a>0)的最小值是1.
(Ⅰ)求a;
(Ⅱ)若關(guān)于x的方程f2(x)ex﹣6mf(x)+9mex=0在區(qū)間[1,+∞)有唯一的實(shí)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 上兩個(gè)不同的點(diǎn)A,B關(guān)于直線y=mx+ 對(duì)稱.
(1)求實(shí)數(shù)m的取值范圍;
(2)求△AOB面積的最大值(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且b,c是關(guān)于x的一元二次方程x2+mx﹣a2+b2+c2=0的兩根.
(1)求角A的大;
(2)已知a= ,設(shè)B=θ,△ABC的面積為y,求y=f(θ)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< )的部分圖象如圖所示,將函數(shù)f(x)的圖象向左平移m(m>0)個(gè)單位后,得到的圖象關(guān)于點(diǎn)( ,﹣1)對(duì)稱,則m的最小值是(
A.
B.
C. π
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某批發(fā)市場對(duì)某種商品的周銷售量(單位:噸)進(jìn)行統(tǒng)計(jì),最近100周的統(tǒng)計(jì)結(jié)果如下表所示:

周銷售量

2

3

4

頻數(shù)

20

50

30


(1)根據(jù)上面統(tǒng)計(jì)結(jié)果,求周銷售量分別為2噸,3噸和4噸的頻率;
(2)已知每噸該商品的銷售利潤為2千元,ξ表示該種商品兩周銷售利潤的和(單位:千元),若以上述頻率作為概率,且各周的銷售量相互獨(dú)立,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案