【題目】在某項娛樂活動的海選過程中評分人員需對同批次的選手進行考核并評分,并將其得分作為該選手的成績,成績大于等于分的選手定為合格選手,直接參加第二輪比賽,大于等于分的選手將直接參加競賽選拔賽.已知成績合格的名參賽選手成績的頻率分布直方圖如圖所示,其中的頻率構(gòu)成等比數(shù)列.

1)求的值;

2)估計這名參賽選手的平均成績;

3)根據(jù)已有的經(jīng)驗,參加競賽選拔賽的選手能夠進入正式競賽比賽的概率為,假設(shè)每名選手能否通過競賽選拔賽相互獨立,現(xiàn)有名選手進入競賽選拔賽,記這名選手在競賽選拔賽中通過的人數(shù)為隨機變量,求的分布列和數(shù)學(xué)期望.

【答案】(1) ;(2)84;(3)分布列見解析,1.

【解析】

(1)利用頻率分布直方圖的性質(zhì)列式求解即可.

(2) 利用頻率分布直方圖求平均數(shù)的方法求解即可.

(3)易得隨機變量滿足二項分布,再根據(jù)二項分布的分布列與數(shù)學(xué)期望求解即可.

:(1)由題意,得

解得

(2)估計這名選手的平均成績?yōu)?/span>.

(3)由題意知,,

可能取值為,

所以

所以的分布列為

的數(shù)學(xué)期望為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是邊長為1的正方形,垂直于底面.

1)求證; 

2)求平面與平面所成二面角的大;

3)設(shè)棱的中點為,求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A、B是單位圓O上的兩點(O為圓心),∠AOB=120°,點C是線段AB上不與A、B重合的動點.MN是圓O的一條直徑,則的取值范圍是( )

A. [,0) B. [,0] C. [,1) D. [,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了迎接2000年的到來,某地組織了一次乒乓球迎春幸運賽.首先,通過身份號抽選出2000名選手,編號為1,2,…,2000,他們當(dāng)中任兩人都可以組成一對雙打選手,每對選手的編號之和稱為他們的“和號”.規(guī)定:“和號”相同的兩對選手方有資格進行幸運雙打賽.比賽開始前,組委會首先從2000個編號中隨機抽出65名幸運選手,然后找出“和號”相同的兩對選手進行幸運雙打賽(凡同一“和號”的選手分在同一區(qū)進行單循環(huán)).求證:無論怎樣抽選,總有選手進行幸運賽.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩班各派三名同學(xué)參加知識競賽,每人回答一個問題,答對得10分,答錯得0分,假設(shè)甲班三名同學(xué)答對的概率都是,乙班三名同學(xué)答對的概率分別是,,,且這六名同學(xué)答題正確與否相互之間沒有影響.

1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;

2)用表示甲班總得分,求隨機變量的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1EBC的中點.

1)求證:AEB1C;

2)求異面直線AEA1C所成的角的大小;

3)若GC1C中點,求二面角C-AG-E的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱ABCD—A1B1C1D1中,AB=BD=1,,AA1=BC=2,AD∥BC.

(1)證明:BD⊥平面ABB1A1

(2)比較四棱錐D—ABB1A1與四棱錐D—A1B1C1D1的體積的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寫出下面平面幾何中的常見結(jié)論在立體幾何中也成立的所有序號______.

①四邊形內(nèi)角和為;

②垂直的兩條直線必相交;

③垂直同一條直線的兩條直線平行;

④平行同一條直線的兩條直線平行;

⑤四邊相等的四邊形,其對角線垂直;

⑥到三角形三邊距離相等的點是這個三角形的內(nèi)心;

⑦到一個角的兩邊距離相等的點必在這個角的角平分線上;

⑧在平面幾何中有一組平行線(至少3條)被兩條直線所截得的對應(yīng)線段成比例的結(jié)論,則這一結(jié)論可推廣到立體幾何中一組平行平面(至少3個)被兩條直線所截得的對應(yīng)線段也成比例.”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究機構(gòu)對某校高二文科學(xué)生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù).

x

6

8

10

12

y

2

3

5

6

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

(3)試根據(jù)(2)中求出的線性回歸方程,預(yù)測記憶力為14的學(xué)生的判斷力.

查看答案和解析>>

同步練習(xí)冊答案