設(shè)f(x)是連續(xù)的偶函數(shù),且當(dāng)x>0時(shí)是單調(diào)函數(shù),則滿足f(x)=f()的所有x之和為(  )

(A)-3   (B)3   (C)-8   (D)8

 

C

【解析】因?yàn)?/span>f(x)是連續(xù)的偶函數(shù),x>0時(shí)是單調(diào)函數(shù),由偶函數(shù)的性質(zhì)可知若f(x)=f(),只有兩種情況:x=;x+=0,

由①知x2+3x-3=0,故兩根之和為x1+x2=-3,

由②知x2+5x+3=0,故其兩根之和為x3+x4=-5.

因此滿足條件的所有x之和為-8.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試選修4-5不等式選講 練習(xí)卷(解析版) 題型:解答題

已知a,b為正實(shí)數(shù).

(1)求證:ab

(2)利用(1)的結(jié)論求函數(shù)y (0<x<1)的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試解答題保分訓(xùn)練練習(xí)卷(解析版) 題型:解答題

某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:[40,50),[50,60),,[90,100]后得到如圖所示的頻率分布直方圖.

(1)求圖中實(shí)數(shù)a的值;

(2)若該校高一年級(jí)共有學(xué)生640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù);

(3)若從數(shù)學(xué)成績(jī)?cè)?/span>[40,50)[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(四)第二章第一節(jié)練習(xí)卷(解析版) 題型:選擇題

如果f()=,則當(dāng)x0x1時(shí),f(x)=(  )

(A) (B) (C) (D)-1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(六)第二章第三節(jié)練習(xí)卷(解析版) 題型:填空題

設(shè)f(x)(-,+)上的奇函數(shù),f(x+2)=-f(x),下面關(guān)于f(x)的判定:其中正確命題的序號(hào)為    .

f(4)=0;

f(x)是以4為周期的函數(shù);

f(x)的圖象關(guān)于x=1對(duì)稱;

f(x)的圖象關(guān)于x=2對(duì)稱.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(六)第二章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x0時(shí),f(x)=2x+2x+b(b為常數(shù)),f(-1)=(  )

(A)-3 (B)-1 (C)1 (D)3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(八)第二章第五節(jié)練習(xí)卷(解析版) 題型:填空題

已知函數(shù)f(x)=若方程f(x)=k無實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是      .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(五)第二章第二節(jié)練習(xí)卷(解析版) 題型:填空題

設(shè)函數(shù)f(x)=的最小值為2,則實(shí)數(shù)a的取值范圍是      .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(九)第二章第六節(jié)練習(xí)卷(解析版) 題型:選擇題

f(x)=x2-x+a,f(-m)<0,f(m+1)的值是(  )

(A)正數(shù) (B)負(fù)數(shù)

(C)非負(fù)數(shù) (D)不能確定正負(fù)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案