【題目】以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位,已知直線l的參數(shù)方程為 (t為參數(shù),0<φ<π),曲線C的極坐標(biāo)方程為ρcos2θ=8sinθ.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A、B兩點,當(dāng)φ變化時,求|AB|的最小值.
【答案】
(1)解:直線l的參數(shù)方程為 消去參數(shù)可得:xcosφ﹣ysinφ+2sinφ=0;
即直線l的普通方程為xcosφ﹣ysinφ+2sinφ=0;
曲線C的極坐標(biāo)方程為ρcos2θ=8sinθ.可得:ρ2cos2θ=8ρsinθ.
那么:x2=8y.
∴曲線C的直角坐標(biāo)方程為x2=8y
(2)解:直線l的參數(shù)方程帶入C的直角坐標(biāo)方程,可得:t2cos2φ﹣8tsinφ﹣16=0;
設(shè)A,B兩點對應(yīng)的參數(shù)為t1,t2,
則 , .
∴|AB|=|t1﹣t2|= = .
當(dāng)φ= 時,|AB|取得最小值為8
【解析】(1)直接消去直線l的參數(shù)可得普通方程;根據(jù)ρcosθ=x,ρsinθ=y,ρ2=x2+y2 , 進行代換即得曲線C的直角坐標(biāo)方程.(2)將直線l的參數(shù)方程帶入C的直角坐標(biāo)方程;設(shè)出A,B兩點的參數(shù),利用韋達(dá)定理建立關(guān)系求解最值即可.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐P﹣ABC的各頂點都在同一球的面上,且PA⊥平面ABC,若球O的體積為 (球的體積公式為 R3 , 其中R為球的半徑),AB=2,AC=1,∠BAC=60°,則三棱錐P﹣ABC的體積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為3的正方體ABCD﹣A1B1C1D1中,A1E=CF=1.
(1)求兩條異面直線AC1與D1E所成角的余弦值;
(2)求直線AC1與平面BED1F所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)正數(shù)x,y滿足log x+log3y=m(m∈[﹣1,1]),若不等式3ax2﹣18xy+(2a+3)y2≥(x﹣y)2有解,則實數(shù)a的取值范圍是( )
A.(1, ]
B.(1, ]
C.[ ,+∞)
D.[ ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知 .
(1)求角B的大;
(2)若b= ,a+c=3,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= 與g(x)=a2lnx+b有公共點,且在公共點處的切線方程相同,則實數(shù)b的最大值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的不等式的解集為;
(1)若,求的取值范圍;
(2)若存在兩個不相等負(fù)實數(shù)、,使得,求實數(shù)的取值范圍;
(3)是否存在實數(shù),滿足:“對于任意,都有,對于任意的,都有”,若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了了解用戶對其產(chǎn)品的滿意度,從A,B兩地區(qū)分別隨機調(diào)查了40個用戶,根據(jù) 用戶對其產(chǎn)品的滿意度的評分,得到A地區(qū)用戶滿意度評分的頻率分布直方圖和B地區(qū)用戶滿意度評分的頻率分布表.A地區(qū)用戶滿意度評分的頻率分布直方圖
B地區(qū)用戶滿意度評分的頻率分布表
滿意度評分分組 | [50,60) | [50,60) | [50,60) | [50,60) | [50,60) |
頻數(shù) | 2 | 8 | 14 | 10 | 6 |
(1)(I)在答題卡上作出B地區(qū)用戶滿意度評分的頻率分布直方圖,并通過此圖比較兩地區(qū)滿意度評分的平均值及分 散 程度.(不要求計算出具體值,給出結(jié)論即可)
B地區(qū)用戶滿意度評分的頻率分布直方圖
(2)(II)根據(jù)用戶滿意度評分,將用戶的滿意度評分分為三個等級:
滿意度評分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級 | 不滿意 | 滿意 | 非常滿意 |
估計那個地區(qū)的用戶的滿意度等級為不滿意的概率大,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com