求和:Sn=
1
2
+
3
4
+
5
8
+
7
16
+…+
2n-1
2n
考點(diǎn):數(shù)列的求和
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:利用錯(cuò)位相減法即可得到結(jié)論.
解答: 解:因?yàn)?span id="as7qna1" class="MathJye">Sn=
1
2
+
3
4
+
5
8
+
7
16
+…+
2n-1
2n

所以
1
2
Sn=
1
4
+
3
8
+
5
16
+…+
2n-3
2n
+
2n-1
2n+1
,
兩式相減得:
1
2
Sn=
1
2
+
2
4
+
2
8
+
2
16
+…+
2
2n
-
2n-1
2n+1
=
1
2
+
1
2
(1-
1
2n-1
)
1-
1
2
-
2n-1
2n+1
,
Sn=3-
2n+3
2n
點(diǎn)評(píng):本題主要考查數(shù)列求和,利用錯(cuò)位相減法是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P=ABCD中,E為AD上一點(diǎn),面PAD⊥面ABCD,四邊形BCDE為矩形∠PAD=60°,PB=2
3
,PA=ED=2AE=2.
(Ⅰ)已知
PF
PC
(λ∈R),且PA∥面BEF,求λ的值;
(Ⅱ)求證:CB⊥平面PEB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=(k+1)x2-(2k+1)x+1,x∈R.
(1)若f(x)>0恒成立,求實(shí)數(shù)k的取值范圍;
(2)當(dāng)-1<k<0時(shí),解不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知?jiǎng)狱c(diǎn)P(x,y)(y≤0)到點(diǎn)F(0,2)的距離為d1,到x軸的距離為d2,且d1-d2=2.
(Ⅰ)求點(diǎn)P的軌跡E的方程;
(Ⅱ)若直線(xiàn)l斜率為1且過(guò)點(diǎn)(1,0),其與軌跡E交于點(diǎn)M、N,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx+2cos2x-1
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間[-
π
6
,
π
4
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}、{bn}滿(mǎn)足a1=2,an-1=an(an+1-1),bn=an-1,數(shù)列{bn}的前n項(xiàng)和為Sn,n∈N*
(1)證明數(shù)列{
1
bn
}
為等差數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明:對(duì)任意的n∈N*,有1+
n
2
S2n
1
2
+n成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足a1=1,an+1=2an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn為數(shù)列{
2n
an+1
}的前n項(xiàng)和,求Sn
(3)證明:
1
a1
+
1
a2
+
1
a3
+…+
1
an+1
5
3
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐P-ABCD,PD⊥面ABCD,AB∥DC,AD⊥DC,AD=
2
,CD=4,PD=2,E為AP上一點(diǎn),DE⊥AP,F(xiàn)是平面DEC與BP的交點(diǎn).
(Ⅰ)求證:EF∥AB;
(Ⅱ)求證:AP⊥面EFCD;
(Ⅲ)求PC與面EFCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-
1
3
x3+
a
2
x2-2x,g(x)=
1
3
x3-
a
2
x2+(a+2)x+
a+1
x
-lnx,(a∈R)
(Ⅰ)當(dāng)a=3時(shí),x∈[
3
2
,2],求函數(shù)f(x)的最大值;
(Ⅱ)當(dāng)a≥-1時(shí),討論函數(shù)F(x)=f(x)+g(x)的單調(diào)性;
(Ⅲ)若過(guò)點(diǎn)(0,-
1
3
)可作函數(shù)y=f(x)圖象的三條不同切線(xiàn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案