【題目】在三角形ABC中,,D是線段BC上一點,且,F為線段AB上一點.

1)若,求的值;

2)求的取值范圍;

3)若為線段的中點,直線相交于點,求

【答案】1;(2;(3.

【解析】

1)根據(jù)平面向量基本定理,由題中條件,得到,求出,即可得出結(jié)果;

2)根據(jù)題意,先求出,,設(shè),再由平面向量數(shù)量積運(yùn)算,即可求出結(jié)果;

3)根據(jù)題意,先得到,設(shè),分別得到,,列出方程組求解,求出,進(jìn)而可計算出結(jié)果.

1)因為,所以,即

所以,又,所以,

因此

2)因為在三角形ABC中,,

所以,

因此,

設(shè),由題意,,

所以

,

因為,所以

3)因為為線段的中點,所以

因為直線相交于點,不妨設(shè),

所以,

因此,

所以,

因此,

所以,解得:,

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 的左、右焦點、,其焦距為,點在橢圓的內(nèi)部,點是橢圓上的動點,且恒成立,則橢圓離心率的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 ()的一個焦點為橢圓內(nèi)一點,若橢圓上存在一點,使得,則橢圓的離心率的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2lnx-ax2,若α,β都屬于區(qū)間[1,4],且β-α=1,f(α)=f(β),則實數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的兩條漸近線與拋物線的準(zhǔn)線分別交于AB兩點,O為坐標(biāo)原點,若,則雙曲線的離心率__________

【答案】

【解析】因為雙曲線的兩條漸近線為 ,拋物線的準(zhǔn)線為 ,所以 ,

因此

點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標(biāo)的范圍等.

型】填空
結(jié)束】
16

【題目】若函數(shù)滿足:對于圖象上任意一點P,在其圖象上總存在點,使得成立,稱函數(shù)特殊對點函數(shù).給出下列五個函數(shù):

; (其中e為自然對數(shù)的底數(shù));;

其中是特殊對點函數(shù)的序號是__________(寫出所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)),以為極點, 軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程;

(2)設(shè)直線與曲線相交于兩點,求的值.

【答案】(1)曲線的極坐標(biāo)方程為: ;(2)6.

【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線的普通方程,再根據(jù)化為極坐標(biāo)方程;(2)將直線l的極坐標(biāo)方程代入曲線的極坐標(biāo)方程得,再根據(jù)的值.

試題解析:解:1)將方程消去參數(shù),

∴曲線的普通方程為,

代入上式可得

∴曲線的極坐標(biāo)方程為: -

2)設(shè)兩點的極坐標(biāo)方程分別為,

消去,

根據(jù)題意可得是方程的兩根,

,

型】解答
結(jié)束】
23

【題目】選修4—5:不等式選講

已知函數(shù)

(1)當(dāng)時,求關(guān)于x的不等式的解集;

(2)若關(guān)于x的不等式有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠用7萬元錢購買了一臺新機(jī)器,運(yùn)輸安裝費用2千元,每年投保、動力消耗的費用也為2千元,每年的保養(yǎng)、維修、更換易損零件的費用逐年增加,第一年為2千元,第二年為3千元,第三年為4千元,依此類推,即每年增加1千元.

1)求使用n年后,保養(yǎng)、維修、更換易損零件的累計費用S(千元)關(guān)于n的表達(dá)式;

2)問這臺機(jī)器最佳使用年限是多少年?并求出年平均費用(單位:千元)的最小值.(最佳使用年限是指使年平均費用最小的時間,年平均費用=(購入機(jī)器費用+運(yùn)輸安裝費用+每年投保、動力消耗的費用+保養(yǎng)、維修、更換易損零件的累計費用)÷機(jī)器使用的年數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過原點的一條直線與橢圓=1ab0)交于A,B兩點,以線段AB為直徑的圓過該橢圓的右焦點F2,若∠ABF2[],則該橢圓離心率的取值范圍為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的偶函數(shù)滿足,且, ,則函數(shù)的零點個數(shù)是( )

A. 6B. 8C. 2D. 4

查看答案和解析>>

同步練習(xí)冊答案