(本題滿分18分)本題共有3個小題,第1小題滿分5分,第2小題滿分5分,第3小題滿分8分。
已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列。
(1)若,是否存在,有?請說明理由;
(2)若(a、q為常數(shù),且aq0)對任意m存在k,有,試求a、q滿足的充要條件;
(3)若試確定所有的p,使數(shù)列中存在某個連續(xù)p項的和式數(shù)列中的一項,請證明。
(1)不存在,理由見解析。
(2),其中是大于等于的整數(shù)。
(3)當(dāng)為奇數(shù)時,命題都成立。
(1)由得,
整理后,可得,
、,為整數(shù),
不存在、,使等式成立。
(2)當(dāng)時,則,
即,其中是大于等于的整數(shù),
反之當(dāng)時,其中是大于等于的整數(shù),則,
顯然,其中,
、滿足的充要條件是,其中是大于等于的整數(shù)。
(3)設(shè),
當(dāng)為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)為偶數(shù)時,式不成立。
由式得,整理得,
當(dāng)時,符合題意。
當(dāng),為奇數(shù)時,
由,得
當(dāng)為奇數(shù)時,此時,一定有和使上式一定成立。
當(dāng)為奇數(shù)時,命題都成立。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中且.設(shè).
(1)若,,,求方程在區(qū)間內(nèi)的解集;
(2)若點(diǎn)是過點(diǎn)且法向量為的直線上的動點(diǎn).當(dāng)時,設(shè)函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、和的值. 當(dāng)時,試寫出一個條件,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對稱,且在處取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中且.設(shè).
(1)若,,,求方程在區(qū)間內(nèi)的解集;
(2)若點(diǎn)是過點(diǎn)且法向量為的直線上的動點(diǎn).當(dāng)時,設(shè)函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、和的值. 當(dāng)時,試寫出一個條件,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對稱,且在處取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市長寧區(qū)高三教學(xué)質(zhì)量測試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
(文)已知數(shù)列中,
(1)求證數(shù)列不是等比數(shù)列,并求該數(shù)列的通項公式;
(2)求數(shù)列的前項和;
(3)設(shè)數(shù)列的前項和為,若對任意恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市長寧區(qū)高三教學(xué)質(zhì)量測試?yán)砜茢?shù)學(xué) 題型:解答題
本小題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
設(shè)函數(shù)是定義域為R的奇函數(shù).
(1)求k值;
(2)(文)當(dāng)時,試判斷函數(shù)單調(diào)性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的的取值范圍;
(3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值為-2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中且.設(shè).
(1)若,,,求方程在區(qū)間內(nèi)的解集;
(2)若點(diǎn)是過點(diǎn)且法向量為的直線上的動點(diǎn).當(dāng)時,設(shè)函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、和的值. 當(dāng)時,試寫出一個條件,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對稱,且在處取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com