已知向量
a
=(
1
2
1
2
sinx+
3
2
cosx)和向量
b
=(1,f(x)),且
a
b

(1)求函數(shù)f(x)的最小正周期和最大值;
(2)已知△ABC的三個(gè)內(nèi)角分別為A,B,C,若有f(A-
π
3
)=
3
,BC=
7
,sinB=
21
7
,求AC的長度.
考點(diǎn):三角函數(shù)的周期性及其求法,平面向量共線(平行)的坐標(biāo)表示
專題:三角函數(shù)的圖像與性質(zhì),平面向量及應(yīng)用
分析:(1)利用向量共線定理、兩角和差的正弦公式、三角函數(shù)的性質(zhì)即可得出;
(2)利用正弦定理即可得出.
解答: 解:(1)∵
a
b
,∴
1
2
f(x)
-(
1
2
sinx+
3
2
cosx)
=0,化為f(x)=sinx+
3
cosx
=2sin(x+
π
3
)

∴函數(shù)f(x)的周期為2π,最大值為2.
(2)∵f(A-
π
3
)=
3
得2sinA=
3
,即sinA=
3
2

由正弦定理得
BC
sinA
=
AC
sinB
,又BC=
7
,sinB=
21
7
,則AC=
BCsinB
sinA
=2.
點(diǎn)評(píng):本題考查了向量共線定理、兩角和差的正弦公式、三角函數(shù)的性質(zhì)、正弦定理,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β∈R,設(shè)p:α>β,設(shè)q:α-sinβcosα>β-sinαcosβ,則p是q的( 。
A、充分必要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=loga(2ax-1)(a>0,且a≠0),求:
(1)函數(shù)f(x)的零點(diǎn);        
(2)函數(shù)f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=9x-2×3x+4,x∈[0,2]
(1)設(shè)t=3x,x∈[0,2],求t的最大值與最小值;
(2)求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了了解高一年級(jí)學(xué)生的身高情況,某校按10%的比列對(duì)全校800名高一年級(jí)學(xué)生按性別進(jìn)行抽樣調(diào)查,得到如下頻數(shù)分布表:
表1:男生身高頻數(shù)分布表
身高(cm) [160,165) [165,170) [170,175) [175,180) [180,185) [185,190)
頻數(shù) 2 5 14 13 4 2
表2:女生身高頻數(shù)分布表
身高(cm) [150,155) [155,160) [160,165) [165,170) [170,175) [175,180)
頻數(shù) 2 12 16 6 3 1
(1)分別估計(jì)高一年級(jí)男生和女生的平均身高;
(2)在樣本中,從身高180cm以上的男生中任選2人,求至少有一人身高在185cm以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a|
 (x- a)( x- a2+ a)
 x - a
=0有唯一實(shí)數(shù)解},試用列舉法表示集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD是矩形,AD=2AB,SA=SD,SA⊥AB,N是棱AD的中點(diǎn).
(Ⅰ)求證:AB∥平面SCD;
(Ⅱ)求證:SN⊥平面ABCD;
(Ⅲ)在棱SC上是否存在一點(diǎn)P,使得平面PBD⊥平面ABCD?若存在,求出
SP
PC
的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD,PB⊥AC,Q是線段PB的中點(diǎn).
(Ⅰ)求證:AB⊥平面PAC:
(Ⅱ)求證:AQ∥平面PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們把焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對(duì)“相關(guān)曲線”,己知F1,F(xiàn)2是一對(duì)相關(guān)曲線的焦點(diǎn),P是它們?cè)诘谝幌笙薜慕稽c(diǎn),當(dāng)∠F1PF2=60°,則這 一對(duì)相關(guān)曲線中橢圓的離心率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案