圓錐的側(cè)面展開(kāi)圖是圓心角為
3
π,面積為2
3
π的扇形,則圓錐的體積是
 
考點(diǎn):旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái))
專題:空間位置關(guān)系與距離
分析:設(shè)圓錐的底面半徑為r,母線長(zhǎng)為l,利用圓錐的側(cè)面展開(kāi)圖是圓心角為
3
π,面積為2
3
π的扇形,列出關(guān)系式,即可求出l,r,然后求出圓錐的高,即可求解圓錐的體積.
解答: 解:設(shè)圓錐的底面半徑為r,母線長(zhǎng)為l,
由題意知
2πr
l
=
3
π,且
1
2
•2πr•l=2
3
π,
解得l=2,r=
3
,所以圓錐高h(yuǎn)=
l2-r2
=
4-3
=1,則體積V=
1
3
πr2h=π.
故答案為:π.
點(diǎn)評(píng):本題考查圓錐的側(cè)面展開(kāi)圖及體積的計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知對(duì)任意平面向量
AB
=(x,y),把
AB
繞其起點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)θ角得到向量
AP
=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ角得到點(diǎn)P.設(shè)平面曲線C上的每一點(diǎn)繞坐標(biāo)原點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)
π
4
后得到的點(diǎn)的軌跡是曲線x2-y2=3,則原來(lái)的曲線C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

抽樣統(tǒng)計(jì)甲,乙兩個(gè)城市連續(xù)5天的空氣質(zhì)量指數(shù)(AQI),數(shù)據(jù)如下:
城市 空氣質(zhì)量指數(shù)(AQI)
第1天 第2天 第3天 第4天 第5天
109 111 132 118 110
110 111 115 132 112
則空氣質(zhì)量指數(shù)(AQI)較為穩(wěn)定(方差較。┑某鞘袨
 
(填甲或乙).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a、b為兩個(gè)正數(shù),且a+b=2,則
1
a
+
1
b
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于的方程|tanx|cosx=a在區(qū)間[0,
π
2
)∪(
π
2
2
)上有兩個(gè)不同的實(shí)根,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(ωx+φ)(其中x∈R,ω>0,-π<φ<π)的部分圖象如圖所示.如果對(duì)函數(shù)g(x)的圖象進(jìn)行如下變化:橫坐標(biāo)擴(kuò)大為原來(lái)的2倍,縱坐標(biāo)不變,也可得到f(x)函數(shù)的圖象,則函數(shù)g(x)的解析式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式1≤2x≤8的解是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)(0,5)到直線2x-y=0的距離是( 。
A、
5
2
B、
5
C、
3
2
D、
5
4

查看答案和解析>>

同步練習(xí)冊(cè)答案