已知函數(shù)f(x)是在(0,+∞)上每一點(diǎn)處均可導(dǎo)的函數(shù),若xf′(x)>f(x)在x>0時(shí)恒成立.

(Ⅰ)求證:函數(shù)g(x)=在(0,+∞)上是增函數(shù);

(Ⅱ)求證:當(dāng)x1>0,x2>0時(shí),有f(x1+x2)>f(x1)+f(x2);

(Ⅲ)求證:ln22+ln32+ln42+…+ln(n+1)2(n∈N*).

(Ⅰ)證明:∵g′(x)=,又xf′(x)>f(x)在x>0時(shí)恒成立,

∴g′(x)>0,∴g(x)=在(0,+∞)上是增函數(shù).

(Ⅱ)證明:當(dāng)x1>0,x2>0時(shí),有x1+x2>x1,x1+x2>x2,

    由(Ⅰ)得g(x1+x2)>g(x1),g(x1+x2)>g(x2),

    即:,.

∴x1f(x1+x2)>(x1+x2)f(x1),

x2f(x1+x2)>(x1+x2)f(x2),

∴(x1+x2)f(x1+x2)>(x1+x2)(f(x1)+f(x2)),

∴f(x1+x2)>f(x1)+f(x2).

(Ⅲ)用數(shù)學(xué)歸納法證明

(ⅰ)當(dāng)n=1時(shí),左==ln4,

    右==·,由于ln4>1>,

ln4·.即原不等式成立.

(ⅱ)假設(shè)n=k時(shí),命題成立.即:

+++…+,

    那么:+++…+

2+

=

=·.

    這就是說(shuō),當(dāng)n=k+1時(shí),命題也成立.

    由(ⅰ)(ⅱ)可知,對(duì)一切n∈N*,都有

+++…+成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是在(0,+∞)上每一點(diǎn)處均可導(dǎo)的函數(shù),若xf′(x)>f(x)在x>0時(shí)恒成立.?

(1)求證:函數(shù)g(x)=在(0,+∞)上是增函數(shù);

(2)求證:當(dāng)x1>0,x2>0時(shí),有f(x1+x2)>f(x1)+f(x2);

(3)已知不等式ln(1+x)<xx>-1且x≠0時(shí)恒成立,求證:ln22+ln32+ln42+…+)2ln(n+1)2(nN*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是在(0,+∞)上每一點(diǎn)處均可導(dǎo)的函數(shù),若xf′(x)>f(x)在x>0時(shí)恒成立.

(Ⅰ)求證:函數(shù)g(x)=在(0,+∞)上是增函數(shù);

(Ⅱ)求證:當(dāng)x1>0,x2>0時(shí),有f(x1+x2)>f(x1)+f(x2);

(Ⅲ)已知不等式ln(1+x)<x在x>-1且x≠0時(shí)恒成立,求證:ln22+ln32+ln42+…+ln(n+1)2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是在(0,+∞)上每一點(diǎn)處均可導(dǎo)的函數(shù),若xf′(x)>f(x)在x>0時(shí)恒成立.

(Ⅰ)求證:函數(shù)g(x)=在(0,+∞)上是增函數(shù);

(Ⅱ)求證:當(dāng)x1>0,x2>0時(shí),有f(x1+x2)>f(x1)+f(x2);

(Ⅲ)已知不等式ln(1+x)<x在x>-1且x≠0時(shí)恒成立,求證:ln22+ln32+ln42+…+ln(n+1)2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是在(0,+∞)上處處可導(dǎo)的函數(shù),若xf′(x)>f(x)在x>0時(shí)恒成立.

(1)求證:函數(shù)g(x)=在(0,+∞)上單調(diào)遞增;

(2)求證:當(dāng)x1>0,x2>0時(shí),f(x1+x2)>f(x1)+f(x2).

查看答案和解析>>

同步練習(xí)冊(cè)答案