下列推理中,錯(cuò)誤的個(gè)數(shù)為
①A∈l,A∈α,B∈l,B∈α?l?α; ②A∈α,A∈β,B∈α,B∈β?α∩β=AB;
③l?α,A∈l?A∉α;       ④A,B,C∈α,A,B,C∈β且A、B、C不共線?α與β重合.


  1. A.
    0個(gè)
  2. B.
    1個(gè)
  3. C.
    2個(gè)
  4. D.
    3個(gè)
B
分析:一條直線的兩個(gè)點(diǎn)在一個(gè)平面上,則直線在平面上,故①正確,兩個(gè)平面有兩個(gè)交點(diǎn),則有一條交線,故②正確,直線在平面外可能是相交的關(guān)系,根據(jù)不共線的三點(diǎn)確定一個(gè)平面,故④正確.
解答:A∈l,A∈α,B∈l,B∈α?l?α,一條直線的兩個(gè)點(diǎn)在一個(gè)平面上,則直線在平面上,故①正確,
A∈α,A∈β,B∈α,B∈β?α∩β=AB,兩個(gè)平面有兩個(gè)交點(diǎn),則有一條交線,故②正確,
l?α,A∈l?A∉α,A可能在直線上,故③不正確,
A,B,C∈α,A,B,C∈β且A、B、C不共線?α與β重合,根據(jù)不共線的三點(diǎn)確定一個(gè)平面,故④正確,
綜上可知有1個(gè)錯(cuò)誤的.
故選B.
點(diǎn)評(píng):本題考查空間中點(diǎn)線面的位置關(guān)系,是一個(gè)基礎(chǔ)題,題目考查的知識(shí)點(diǎn)比較繁瑣,任意漏掉可能的位置關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列關(guān)于復(fù)數(shù)的類比推理中,錯(cuò)誤的是( 。
①?gòu)?fù)數(shù)的加減運(yùn)算可以類比多項(xiàng)式的加減運(yùn)算;
②由向量
a
的性質(zhì)|
a
|2=
a
2類比復(fù)數(shù)z的性質(zhì)|z|2=z2
③方程ax2+bx+c=0(a,b,c∈R)有兩個(gè)不同實(shí)數(shù)根的條件是b2-4ac>0,可以類比得到方程az2+bz+c=0(a,b,c∈C)有兩個(gè)不同復(fù)數(shù)根的條件是b2-4ac>0;
④由向量加法的幾何意義可以類比得到復(fù)數(shù)加法的幾何意義.
A、①③B、②④C、②③D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、下列推理中,錯(cuò)誤的個(gè)數(shù)為( 。
①A∈l,A∈α,B∈l,B∈α?l?α; ②A∈α,A∈β,B∈α,B∈β?α∩β=AB;
③l?α,A∈l?A∉α;             ④A,B,C∈α,A,B,C∈β且A、B、C不共線?α與β重合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列關(guān)于復(fù)數(shù)的類比推理中,錯(cuò)誤的是( 。
①?gòu)?fù)數(shù)的加減運(yùn)算可以類比多項(xiàng)式的加減運(yùn)算;
②由向量
a
的性質(zhì)|
a
|2=
a
2類比復(fù)數(shù)z的性質(zhì)|z|2=z2
③方程ax2+bx+c=0(a,b,c∈R)有兩個(gè)不同實(shí)數(shù)根的條件是b2-4ac>0,可以類比得到方程az2+bz+c=0(a,b,c∈C)有兩個(gè)不同復(fù)數(shù)根的條件是b2-4ac>0;
④由向量加法的幾何意義可以類比得到復(fù)數(shù)加法的幾何意義.
A.①③B.②④C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年海南省嘉積中學(xué)高一(上)教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試卷(三)(B卷)(解析版) 題型:選擇題

下列推理中,錯(cuò)誤的個(gè)數(shù)為( )
①A∈l,A∈α,B∈l,B∈α⇒l?α; ②A∈α,A∈β,B∈α,B∈β⇒α∩β=AB;
③l?α,A∈l⇒A∉α;             ④A,B,C∈α,A,B,C∈β且A、B、C不共線⇒α與β重合.
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案