雙曲線
y2
4
-
x2
5
=1的離心率的值為( 。
A、
1
2
B、
2
3
C、
3
2
D、
5
3
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:雙曲線
y2
4
-
x2
5
=1中a=2,c=3,利用離心率公式,可得結(jié)論.
解答: 解:雙曲線
y2
4
-
x2
5
=1中a=2,c=3,
∴離心率e=
c
a
=
3
2

故選:C.
點(diǎn)評(píng):本題考查雙曲線的方程與性質(zhì),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在R上單調(diào)遞減,當(dāng)x+y=1時(shí)恒有f(x)+f(0)>f(y)+f(1)成立,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是兩個(gè)全等的正三角形,給定下列三個(gè)命題:①存在四棱錐,其正視圖、側(cè)視圖如圖;②存在三棱錐,其正視圖、側(cè)視圖如圖;③存在圓錐,其正視圖、側(cè)視圖如圖.其中真命題的個(gè)數(shù)是(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于定義域?yàn)镈的函數(shù)y=f(x)和常數(shù)C,若對(duì)任意正實(shí)數(shù)ξ,存在x∈D,使得0<|f(x)-c|<ξ恒成立,則稱函數(shù)y=f(x)為“斂C函數(shù)”.現(xiàn)給出如下函數(shù):
①f(x)=x(x∈Z); ②f(x)=(
1
2
x+1(x∈Z);③f(x)=log2x;
其中為“斂1函數(shù)”的有( 。
A、②B、①③C、②③D、①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將n2個(gè)正整數(shù)1、2、3、…、n2(n≥2)任意排成n行n列的數(shù)表.對(duì)于某一個(gè)數(shù)表,計(jì)算某行或某列中的任意兩個(gè)數(shù)a、b(a>b)的比值
a
b
,稱這些比值中的最小值為這個(gè)數(shù)表的“特征值”.當(dāng)n=2時(shí),數(shù)表的所有可能的“特征值”的最大值為( 。
A、
4
3
B、
3
2
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足條件
y≥x
x+y≥0
y≤1
,則x-2y的最小值是( 。
A、-3B、-2C、-1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x∈N|y=ln(2-x)},B={x|2x(x-2)≤1},A∩B=( 。
A、{x|x≥1}
B、{x|1≤x<2}
C、{1}
D、{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x=
a2
a2+b2
被雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線所截得線段的長度恰好等于其一個(gè)焦點(diǎn)到漸近線的距離,則此雙曲線的離心率為(  )
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖為函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<
π
2
)的部分圖象.
(1)求f(x)的解析式及其單調(diào)遞增區(qū)間;
(2)求函數(shù)g(x)=
f(x)+2
f(x+
π
4
)+2
的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案