【題目】在四棱錐P-ABCD中,ABCD為梯形,AB//CD,BC⊥AB,AB=2,BC=,CD=PC=。

(I)點(diǎn)E在線段PB上,滿足CE//平面PAD,求的值。

(II)已知AC與BD的交點(diǎn)為M,若PM=1,且平面PAC⊥平面ABCD,求二面角P-BC-M平面角的余弦值。

【答案】(Ⅰ)2;(Ⅱ).

【解析】

I)延長交于點(diǎn),根據(jù)線面平行的性質(zhì)定理,證得,由此得到中點(diǎn),即有.(II)在直角梯形中證得,根據(jù)勾股定理證得,即證得. 作,可得的平面角,解直角三角形求得的余弦值.

(Ⅰ)延長交于點(diǎn),則,故的中點(diǎn).

是平面與平面的交線,

平面,則

中點(diǎn),∴

(Ⅱ)在梯形中,

,∴,

,∴

,

可得,∴

,連接.由于,則平面,則,

可得的平面角,且,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車從起點(diǎn)出發(fā)開到終點(diǎn)不允許反向行駛),的距離為2007.在沿途設(shè)立了一些車站,所有到的距離是100的倍數(shù)的地方都設(shè)立了車站這些車站的集合設(shè)為),所有到的距離是223的倍數(shù)的地方也都設(shè)立了車站這些車站的集合設(shè)為).該車在行駛途中的每次停車,要么在距其最近的集合中的車站停車,要么在距其最近的集合中的車站停車.則由駛到的所有可能的停車方式的數(shù)目在區(qū)間( 。┲

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在等比數(shù)列{an}中,=2,,=128,數(shù)列{bn}滿足b1=1,b2=2,且{}為等差數(shù)列.

(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;

(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)O為坐標(biāo)原點(diǎn),橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為,點(diǎn)I,J分別是橢圓C的右頂點(diǎn)、上頂點(diǎn),IOJ的邊IJ上的中線長為

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)H(-2,0)的直線交橢圓C于A,B兩點(diǎn),若AF1⊥BF1,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銷售某種活海鮮,根據(jù)以往的銷售情況,按日需量(公斤)屬于[0,100),[100,200),[200,300),[300,400),[400,500]進(jìn)行分組,得到如圖所示的頻率分布直方圖.這種海鮮經(jīng)銷商進(jìn)價(jià)成本為每公斤20元,當(dāng)天進(jìn)貨當(dāng)天以每公斤30元進(jìn)行銷售,當(dāng)天未售出的須全部以每公斤10元賣給冷凍庫.某海鮮產(chǎn)品經(jīng)銷商某天購進(jìn)了300公斤這種海鮮,設(shè)當(dāng)天利潤為元.

(I)求關(guān)于的函數(shù)關(guān)系式;

(II)結(jié)合直方圖估計(jì)利潤不小于800元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知無窮等比數(shù)列的首項(xiàng)、公比均為.

1)試求無窮等比子數(shù)列各項(xiàng)的和;

2)是否存在數(shù)列的一個(gè)無窮等比子數(shù)列,使得它各項(xiàng)的和為?若存在,求出所有滿足條件的子數(shù)列的通項(xiàng)公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:若對任意的x(0,2]都成立,則[0,2]上是增函數(shù),下列函數(shù)中能說明命題p為假命題的有( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠連續(xù)6天對新研發(fā)的產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組數(shù)據(jù)如下表所示

日期

4月1日

4月2日

4月3日

4月4日

4月5日

4月6日

試銷價(jià)

9

11

10

12

13

14

產(chǎn)品銷量

40

32

29

35

44

(1)試根據(jù)4月2日、3日、4日的三組數(shù)據(jù),求關(guān)于的線性回歸方程,并預(yù)測4月6日的產(chǎn)品銷售量;

(2)若選取兩組數(shù)據(jù)確定回歸方程,求選取得兩組數(shù)據(jù)恰好是不相鄰兩天的事件的概率.

參考公式:

其中 ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一種特別列車,沿途共有個(gè)車站(包括起點(diǎn)與終點(diǎn)),因安全需要,規(guī)定在同一車站上車的旅客不能在同一車站下車。為了保證上車的旅客都有座位(每位旅客一個(gè)座位),則列車至少要安排()個(gè)座位。

A. B. 100 C. 110 D. 120

查看答案和解析>>

同步練習(xí)冊答案