精英家教網 > 高中數學 > 題目詳情

在等比數列{an}中,已知a1+a2+a3=2,a3+a4+a5=8,則a4+a5+a6=________.

±16
分析:根據等比數列的性質可知==都等于公比q的平方,由已知條件列出關于公比q的方程,求出q的值,然后再根據==都等于公比q的立方,把公比q的值代入即可求出值.
解答:設等比數列的公比為q,由a1+a2+a3=2,則a3+a4+a5=q2(a1+a2+a3)=2q2=8,即q2=4,q=±2;
所以a4+a5+a6=q3(a1+a2+a3)=±8×2=±16.
故答案為:±16
點評:本題主要考查了等比數列的性質,屬基礎題.學生做題時注意公比q的值有兩個.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在等比數列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求數列{an}的通項公式;
(2)若數列{an}的公比大于1,且bn=log3
an
2
,求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

在等比數列{an}中,若a1=1,公比q=2,則a12+a22+…+an2=(  )
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中數學 來源: 題型:

在等比數列{an}中,如果a1+a3=4,a2+a4=8,那么該數列的前8項和為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

在等比數列{an}中,a1=1,8a2+a5=0,數列{
1
an
}
的前n項和為Sn,則S5=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

在等比數列{an}中,an>0且a2=1-a1,a4=9-a3,則a5+a6=
81
81

查看答案和解析>>

同步練習冊答案