【題目】某市為了了解民眾對開展創(chuàng)建文明城市工作以來的滿意度,隨機(jī)調(diào)查了40名群眾,并將他們隨機(jī)分成,兩組,每組20人,組群眾給第一階段的創(chuàng)文工作評分,組群眾給第二階段的創(chuàng)文工作評分,根據(jù)兩組群眾的評分繪制了如圖所示的莖葉圖.
(Ⅰ)根據(jù)莖葉圖比較群眾對兩個階段的創(chuàng)文工作滿意度評分的平均值和集中程度(不要求計算出具體值,給出結(jié)論即可);
(Ⅱ)完成下面的列聯(lián)表,并通過計算判斷是否有的把握認(rèn)為民眾對兩個階段創(chuàng)文工作的滿意度存在差異?
低于70分 | 不低于70分 | 合計 | |
第一階段 | |||
第二階段 | |||
合計 |
參考公式:,.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【答案】(Ⅰ)組群眾給第二階段創(chuàng)文工作滿意度評分的平均值高于組群眾給第一階段創(chuàng)文工作滿意度評分的平均值,且給分相對于組更集中些;(Ⅱ)詳見解析.
【解析】
(Ⅰ)觀察莖葉圖,可以得出滿意度評分的平均值和集中程度.
(Ⅱ)完成列聯(lián)表,根據(jù)進(jìn)行求解,然后進(jìn)行對比可得.
解:(Ⅰ)根據(jù)莖葉圖看出,組群眾給第二階段創(chuàng)文工作滿意度評分的“葉”大部分分布在“莖”的7、8、9上,也相對集中在峰值的附近,∴組群眾給第二階段創(chuàng)文工作滿意度評分的平均值高于組群眾給第一階段創(chuàng)文工作滿意度評分的平均值,且給分相對于組更集中些.
(Ⅱ)填寫列聯(lián)表如下:
低于70分 | 不低于70分 | 合計 | |
第一階段 | 11 | 9 | 20 |
第二階段 | 3 | 17 | 20 |
合計 | 14 | 26 | 40 |
計算,
∴有的把握認(rèn)為民眾對兩個階段創(chuàng)文工作的滿意度存在差異.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)在全校范圍內(nèi)舉辦了一場“中國詩詞大會”的比賽,規(guī)定初賽測試成績不小于160分的學(xué)生進(jìn)入決賽階段比賽.現(xiàn)有200名學(xué)生參加測試,并將所有測試成績統(tǒng)計如下表:
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
6 | 0.03 | |
0.38 | ||
100 | 0.5 | |
6 | 0.03 | |
合計 | 200 | 1 |
(1)計算的值;
(2)現(xiàn)利用分層抽樣的方法從進(jìn)入決賽的學(xué)生中選擇6人,再從選出的6人中選2人做進(jìn)一步的研究,求選擇的2人中至少有1人的分?jǐn)?shù)在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點(diǎn)M在線段PPD//平面MAC,PA=PD=,AB=4.
(I)求證:M為PB的中點(diǎn);
(II)求二面角B-PD-A的大。
(III)求直線MC與平面BDP所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體的棱上(除去棱AD)到直線與的距離相等的點(diǎn)有個,記這個點(diǎn)分別為,則直線與平面所成角的正弦值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校舉行知識競賽,第一輪選拔共設(shè)有A、B、C、D四個問題,規(guī)則如下:
①每位參加者記分器的初始分均為10分,答對問題A、B、C、D分別加1分、2分、3分、6分,答錯任一題減2分;
②每回答一題,記分器顯示累計分?jǐn)?shù),當(dāng)累計分?jǐn)?shù)小于8分時,答題結(jié)束,淘汰出局;當(dāng)累計分?jǐn)?shù)大于或等于14分時,答題結(jié)束,進(jìn)入下一輪;當(dāng)答完四題,累計分?jǐn)?shù)仍不足14分時,答題結(jié)束,淘汰出局;
③每位參加者按問題A、B、C、D順序作答,直至答題結(jié)束.
假設(shè)甲同學(xué)對問題A、B、C、D回答正確的概率依次為、、、,且各題回答正確與否相互之間沒有影響.
(1)求甲同學(xué)能進(jìn)入下一輪的概率;
(2)用ξ表示甲同學(xué)本輪答題結(jié)束時答題的個數(shù),求ξ的分布列和數(shù)學(xué)期望Εξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心C在直線上.
若圓C與y軸的負(fù)半軸相切,且該圓截x軸所得的弦長為,求圓C的標(biāo)準(zhǔn)方程;
已知點(diǎn),圓C的半徑為3,且圓心C在第一象限,若圓C上存在點(diǎn)M,使為坐標(biāo)原點(diǎn),求圓心C的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,角, , 所對的邊分別為, , ,且.
(Ⅰ)求角的大。
(Ⅱ)已知, 的面積為,求的周長.
【答案】(Ⅰ).(Ⅱ).
【解析】【試題分析】(I)利用正弦定理和三角形內(nèi)角和定理化簡已知,可求得的值,進(jìn)而求得的大小.(II)利用余弦定理和三角形的面積公式列方程組求解的的值,進(jìn)而求得三角形周長.
【試題解析】
(Ⅰ)由及正弦定理得, ,
,∴,
又∵,∴.
又∵,∴.
(Ⅱ)由, ,根據(jù)余弦定理得,
由的面積為,得.
所以 ,得,
所以周長.
【題型】解答題
【結(jié)束】
18
【題目】為促進(jìn)農(nóng)業(yè)發(fā)展,加快農(nóng)村建設(shè),某地政府扶持興建了一批“超級蔬菜大棚”.為了解大棚的面積與年利潤之間的關(guān)系,隨機(jī)抽取了其中的7個大棚,并對當(dāng)年的利潤進(jìn)行統(tǒng)計整理后得到了如下數(shù)據(jù)對比表:
大棚面積(畝) | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 |
年利潤(萬元) | 6 | 7 | 7.4 | 8.1 | 8.9 | 9.6 | 11.1 |
由所給數(shù)據(jù)的散點(diǎn)圖可以看出,各樣本點(diǎn)都分布在一條直線附近,并且與有很強(qiáng)的線性相關(guān)關(guān)系.
(Ⅰ)求關(guān)于的線性回歸方程;
(Ⅱ)小明家的“超級蔬菜大棚”面積為8.0畝,估計小明家的大棚當(dāng)年的利潤為多少;
(Ⅲ)另外調(diào)查了近5年的不同蔬菜畝平均利潤(單位:萬元),其中無絲豆為:1.5,1.7,2.1,2.2,2.5;彩椒為:1.8,1.9,1.9,2.2,2.2,請分析種植哪種蔬菜比較好?
參考數(shù)據(jù): , .
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某客戶考察了一款熱銷的凈水器,使用壽命為十年,改款凈水器為三級過濾,每一級過濾都由核心部件濾芯來實(shí)現(xiàn).在使用過程中,一級濾芯需要不定期更換,其中每更換個一級濾芯就需要更換個二級濾芯,三級濾芯無需更換.其中一級濾芯每個元,二級濾芯每個元.記一臺凈水器在使用期內(nèi)需要更換的二級濾芯的個數(shù)構(gòu)成的集合為.如圖是根據(jù)臺該款凈水器在十年使用期內(nèi)更換的一級濾芯的個數(shù)制成的柱狀圖.
(1)結(jié)合圖,寫出集合;
(2)根據(jù)以上信息,求出一臺凈水器在使用期內(nèi)更換二級濾芯的費(fèi)用大于元的概率(以臺凈水器更換二級濾芯的頻率代替臺凈水器更換二級濾芯發(fā)生的概率);
(3)若在購買凈水器的同時購買濾芯,則濾芯可享受折優(yōu)惠(使用過程中如需再購買無優(yōu)惠).假設(shè)上述臺凈水器在購機(jī)的同時,每臺均購買個一級濾芯、個二級濾芯作為備用濾芯(其中,),計算這臺凈水器在使用期內(nèi)購買濾芯所需總費(fèi)用的平均數(shù).并以此作為決策依據(jù),如果客戶購買凈水器的同時購買備用濾芯的總數(shù)也為個,則其中一級濾芯和二級濾芯的個數(shù)應(yīng)分別是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),.有下列命題:
①對,恒有成立.
②,使得成立.
③“若,則有且.”的否命題.
④“若且,則有.”的逆否命題.
其中,真命題有_____________.(只需填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com