【題目】設(shè)直線l的方程為(a+1)x+y+2﹣a=0(a∈R).
(1)若l在兩坐標(biāo)軸上的截距相等,求l的方程;
(2)若l不經(jīng)過第二象限,求實數(shù)a的取值范圍.

【答案】
(1)解:令x=0,得y=a﹣2. 令y=0,得 (a≠﹣1).

∵l在兩坐標(biāo)軸上的截距相等,∴ ,解之,得a=2或a=0.

∴所求的直線l方程為3x+y=0或x+y+2=0


(2)解:直線l的方程可化為 y=﹣(a+1)x+a﹣2.∵l不過第二象限,

,∴a≤﹣1.∴a的取值范圍為(﹣∞,﹣1]


【解析】(1)先求出直線l在兩坐標(biāo)軸上的截距,再利用 l在兩坐標(biāo)軸上的截距相等 建立方程,解方程求出a的值,從而得到所求的直線l方程.(2)把直線l的方程可化為 y=﹣(a+1)x+a﹣2,由題意得 ,解不等式組求得a的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,定點,點為圓上的動點,點在直線上,點在直線上,且滿足.

(1)求點的軌跡的方程;

(2)過點作斜率為的直線,與曲線交于兩點, 是坐標(biāo)原點,是否存在這樣的直線,使得,若存在,求出直線的斜率的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< ),其圖象相鄰兩條對稱軸之間的距離為 ,且函數(shù)f(x+ )是偶函數(shù),下列判斷正確的是(
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)的圖象關(guān)于點( ,0)d對稱
C.函數(shù)f(x)的圖象關(guān)于直線x=﹣ 對稱
D.函數(shù)f(x)在[ ,π]上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義平面向量之間的一種運算“⊙”如下:對任意的 ,令 ,下面說法錯誤的是( )
A.若 共線,則 =0
B. =
C.對任意的λ∈R,有 =
D.( 2+( 2=| |2| |2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠家為了了解某新產(chǎn)品使用者的年齡情況,現(xiàn)隨機調(diào)査100 位使用者的年齡整理后畫出的頻率分布直方圖如圖所示.

(1)求100名使用者中各年齡組的人數(shù),并利用所給的頻率分布直方圖估計所有使用者的平均年齡;

(2)若已從年齡在的使用者中利用分層抽樣選取了6人,再從這6人中選出2人,求這2人在不同的年齡組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是常數(shù)且),對于下列命題:

①函數(shù)的最小值是

②函數(shù)上是單調(diào)函數(shù);

③若上恒成立,則的取值范圍是;

④對任意的,恒有

其中正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二面角α﹣AB﹣β是直二面角,P為棱AB上一點,PQ、PR分別在平面α、β內(nèi),且∠QPB=∠RPB=45°,則∠QPR為(
A.45°
B.60°
C.120°
D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計,目前微信用戶已達10億,2016年,諸多傳統(tǒng)企業(yè)大佬紛紛嘗試進入微商渠道,讓這個行業(yè)不斷地走向正規(guī)化、規(guī)范化.2017年3月25日,第五屆中國微商博覽會在山東濟南舜耕國際會展中心召開,力爭為中國微商產(chǎn)業(yè)轉(zhuǎn)型升級,某品牌飲料公司對微商銷售情況進行中期調(diào)研,從某地區(qū)隨機抽取6家微商一周的銷售金額(單位:百元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).

(1)若銷售金額(單位:萬元)不低于平均值的微商定義為優(yōu)秀微商,其余為非優(yōu)秀微商,根據(jù)莖葉圖推斷該地區(qū)110家微商中有幾家優(yōu)秀?

(2)從隨機抽取的6家微商中再任取2家舉行消費者回訪調(diào)查活動,求恰有1家是優(yōu)秀微商的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】五個數(shù)1,2,3,4,a的平均數(shù)是3,這五個數(shù)的方差是

查看答案和解析>>

同步練習(xí)冊答案