【題目】設(shè)函數(shù)g(x)=3x , h(x)=9x .
(1)解方程:h(x)﹣8g(x)﹣h(1)=0;
(2)令p(x)= ,求值:p( )+p( )+…+p( )+p( ).
【答案】
(1)解:∵g(x)=3x,h(x)=9x.
h(x)﹣8g(x)﹣h(1)=0,
∴9x﹣8×3x﹣9=0,
∴(3x)2﹣8×3x﹣9=0,
解得3x=9,∴x=2
(2)解:∵p(x)= = ,
∴p(x)+p(1﹣x)= +
= + =1,
∴p( )+p( )+…+p( )+p( )
=1006×1+p( )
=1006+
=
【解析】(1)推導(dǎo)出(3x)2﹣8×3x﹣9=0,由此能求出h(x)﹣8g(x)﹣h(1)=0的解.(2)求出p(x)+p(1﹣x)=1,由此能求出p( )+p( )+…+p( )+p( )的值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的值的相關(guān)知識(shí)可以得到問題的答案,需要掌握函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為圓心的圓與直線: 相切.
(1)求圓O的方程;
(2)若圓O上有兩點(diǎn)M、N關(guān)于直線x+2y=0對稱,且 ,求直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x2﹣1)定義域?yàn)閇0,3],則f(2x﹣1)的定義域?yàn)椋?/span> )
A.[1, ]
B.[0, ]
C.[﹣3,15]
D.[1,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=x2﹣2x+2在區(qū)間(0,4]的值域?yàn)椋?/span> )
A.(2,10]
B.[1,10]
C.(1,10]
D.[2,10]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】問題“求方程5x+12x=13x的解”有如下的思路:方程5x+12x=13x可變?yōu)椋? )x+( )x=1,考察函數(shù)f(x)=( )x+( )x可知f(2)=1,且函數(shù)f(x)在R上單調(diào)遞減,所以原方程有唯一解x=2.仿照此解法可得到不等式:lgx﹣4>2lg2﹣x的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線4x+3y﹣29=0相切.
(Ⅰ)求圓的方程;
(Ⅱ)設(shè)直線ax﹣y+5=0(a>0)與圓相交于A,B兩點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,是否存在實(shí)數(shù)a,使得弦AB的垂直平分線l過點(diǎn)P(﹣2,4),若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= 的定義域?yàn)椋?/span> )
A.[0,1)
B.[0,2)
C.(1,2)
D.[0,1)∪(1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的短軸長為2,離心率為 ,設(shè)過右焦點(diǎn)的直線l與橢圓C交于不同的兩點(diǎn)A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記 ,若直線l的斜率k≥ ,則λ的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,在區(qū)間(0,2)上為增函數(shù)的是( )
A.y=3﹣x
B.y=x2+1
C.y=
D.y=﹣x2+1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com