計算下列定積分
(1)
1
0
(2x-x2)dx

(2)
4
2
(3-2x)dx

(3)
1
0
1
3
x2dx

(4)
0
cosxdx
考點(diǎn):定積分
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)微積分基本定理計算即可.
解答: 解:(1)
1
0
(2x-x2)dx
=(x2-
1
3
x3)
|
1
0
=1-
1
3
=
2
3

(2)
4
2
(3-2x)dx
=(3x-x2)
|
4
2
=(12-16)-(6-4)=-6;
(3)
1
0
1
3
x2dx
=
1
9
x3
|
1
0
=
1
9
;
(4)
0
cosxdx
=sinx
|
0
=0-0=0.
點(diǎn)評:本題主要考查了微積分基本定理,關(guān)鍵是求出原函數(shù),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線的參數(shù)方程為
x=1+2t
y=2-4t
(t為參數(shù)),則直線的斜率為( 。
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a1=1,a4=27,則此數(shù)列的前5項的和S5等于( 。
A、40B、111
C、121D、131

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面向量
a
b
的夾角為60°,
a
=(
3
,-1),|
b
|=1,則|
a
+2
b
|=( 。
A、
10
B、2
2
C、2
3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨機(jī)變量ξ服從正態(tài)分布N(0,σ2),且P(-2<ξ≤2)=0.6,則P(ξ>2)等于( 。
A、0.1B、0.2
C、0.3D、0.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從A、B、C三個男生和D、E兩個女生中,每次隨機(jī)抽取1人,連續(xù)抽取2次.
(1)若采用不放回抽取,求取出的2人不全是男生的概率;
(2)若采用有放回抽取,求:
①2次抽到同一人的概率;
②抽取的2人不全是男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα、cosα是方程4x2+2
6
x+m=0的兩實(shí)根,求:
(1)m的值;
(2)cos3
π
2
-α)+cos3α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一名籃球運(yùn)動員在某一賽季10場比賽的得分的原始記錄的徑葉圖,
(1)計算該運(yùn)動員這10場比賽的平均得分;
(2)估計該運(yùn)動員在每場比賽中得分不少于40分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,橢圓C的參數(shù)方程為
x=acosθ
y=bsinθ
(φ為參數(shù),a>b>0).在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l與圓O的極坐標(biāo)方程分別為ρsin(θ+
π
4
)=
2
2
m(m為非零常數(shù))與ρ=b.若直線l經(jīng)過橢圓C的焦點(diǎn),且與圓O相切,則橢圓C的離心率為
 

查看答案和解析>>

同步練習(xí)冊答案