如圖,已知橢圓的長(zhǎng)軸為AB,過(guò)點(diǎn)B的直線(xiàn)
軸垂直,橢圓的離心率,F為橢圓的左焦點(diǎn),且

(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是此橢圓上異于A(yíng),B的任意一點(diǎn), 軸,H為垂足,延長(zhǎng)HP到點(diǎn)Q,使得HP=PQ,連接AQ并延長(zhǎng)交直線(xiàn)于點(diǎn),的中點(diǎn),判定直線(xiàn)與以為直徑的圓O位置關(guān)系。
(1);(2)直線(xiàn)與以為直徑的圓O相切.

試題分析:本體主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線(xiàn)的方程、點(diǎn)到直線(xiàn)的距離公式等基礎(chǔ)知識(shí),考查用代數(shù)方法研究圓錐曲線(xiàn)的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查運(yùn)算求解能力、綜合分析和解決問(wèn)題的能力.第一問(wèn),先設(shè)出頂點(diǎn)和焦點(diǎn)坐標(biāo),代入到已知中列出表達(dá)式解出的值,所以得到橢圓的標(biāo)準(zhǔn)方程;第二問(wèn),設(shè)出兩點(diǎn)坐標(biāo),得到,所以可以得到直線(xiàn)的方程,同理得直線(xiàn)的方程,由直線(xiàn)的方程得到點(diǎn)坐標(biāo),從而得斜率,利用橢圓方程化簡(jiǎn),從而得到直線(xiàn)的方程,利用圓心到直線(xiàn)的距離與半徑的關(guān)系判斷直線(xiàn)與以為直徑的圓的位置關(guān)系.
試題解析:(1)可知,,,

,

橢圓方程為
(2)設(shè)
,
所以直線(xiàn)AQ的方程為
得直線(xiàn)的方程為

,
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031549686667.png" style="vertical-align:middle;" />
所以

所以直線(xiàn)NQ的方程為
化簡(jiǎn)整理得到,
所以點(diǎn)O直線(xiàn)NQ的距離=圓O的半徑,
直線(xiàn)與以為直徑的圓O相切.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)在拋物線(xiàn)上.
(1)若的三個(gè)頂點(diǎn)都在拋物線(xiàn)上,記三邊,所在直線(xiàn)的斜率分別為,,,求的值;
(2)若四邊形的四個(gè)頂點(diǎn)都在拋物線(xiàn)上,記四邊,,,所在直線(xiàn)的斜率分別為,,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知、為橢圓的左、右焦點(diǎn),且點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)過(guò)的直線(xiàn)交橢圓兩點(diǎn),則的內(nèi)切圓的面積是否存在最大值?
若存在其最大值及此時(shí)的直線(xiàn)方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓及定點(diǎn),點(diǎn)是圓上的動(dòng)點(diǎn),點(diǎn)上,且滿(mǎn)足,點(diǎn)的軌跡為曲線(xiàn)。
(1)求曲線(xiàn)的方程;
(2)若點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)在曲線(xiàn)上,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

定義:對(duì)于兩個(gè)雙曲線(xiàn),,若的實(shí)軸是的虛軸,的虛軸是的實(shí)軸,則稱(chēng),為共軛雙曲線(xiàn).現(xiàn)給出雙曲線(xiàn)和雙曲線(xiàn),其離心率分別為.
(1)寫(xiě)出的漸近線(xiàn)方程(不用證明);
(2)試判斷雙曲線(xiàn)和雙曲線(xiàn)是否為共軛雙曲線(xiàn)?請(qǐng)加以證明.
(3)求值:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的中心在坐標(biāo)原點(diǎn),短軸長(zhǎng)為4,且有一個(gè)焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經(jīng)過(guò)定點(diǎn)M(2,0)且斜率不為0的直線(xiàn)交橢圓C于A(yíng)、B兩點(diǎn),試問(wèn)在x軸上是否另存在一個(gè)定點(diǎn)P使得始終平分?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,直線(xiàn)l與拋物線(xiàn)y2=4x相交于不同的A、B兩點(diǎn).
(1)如果直線(xiàn)l過(guò)拋物線(xiàn)的焦點(diǎn),求·的值;
(2)如果·=-4,證明直線(xiàn)l必過(guò)一定點(diǎn),并求出該定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

矩形的中心在坐標(biāo)原點(diǎn),邊軸平行,=8,=6.分別是矩形四條邊的中點(diǎn),是線(xiàn)段的四等分點(diǎn),是線(xiàn)段的四等分點(diǎn).設(shè)直線(xiàn),,的交點(diǎn)依次為.

(1)求以為長(zhǎng)軸,以為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點(diǎn)都在(1)中的橢圓Q上,請(qǐng)以點(diǎn)L為例,給出證明(即證明點(diǎn)L在橢圓Q上).
(3)設(shè)線(xiàn)段等分點(diǎn)從左向右依次為,線(xiàn)段等分點(diǎn)從上向下依次為,那么直線(xiàn)與哪條直線(xiàn)的交點(diǎn)一定在橢圓Q上?(寫(xiě)出結(jié)果即可,此問(wèn)不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)AB是橢圓的長(zhǎng)軸,點(diǎn)C在橢圓上,且,若AB=4,,則橢圓的兩個(gè)焦點(diǎn)之間的距離為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案