【題目】在 中,內(nèi)角 , , 所對的邊分別為 , , ,已知 , .
(1)當(dāng) 時,求 的面積;
(2)求 周長的最大值.
【答案】
(1)解:由條件得: ,∴ ,∴ .① 時, , ,∴ ,② 時, ,∴ , ,∴ .
∴ 或
(2)解:設(shè) 的外接圓半徑為 ,∴由正弦定理得: ,∴ ,∴周長 .∵ ,∴ ,
∴ ,∴ ,
∴ ,
∵ ,∴ ∴ ,
∴
【解析】(1)根據(jù)題意利用三角恒等變換化簡已知的代數(shù)式可得sin A sin ( B C ) = sin 2 B,結(jié)合三角形的內(nèi)角和為由誘導(dǎo)公式求出 sin ( B + C ) sin ( B C ) = sin 2 B ,利用兩角和差的正弦公式整理可得 2 cos B sin C = 2 sin B cos B,分情況討論cos B的值進而得出三角形的面積的值。(2)設(shè)出 Δ A B C 的外接圓半徑為 R,利用正弦定理分別求出邊a、b、c的關(guān)系式進而得到周長 l = a + b + c = 2 + 2 R sin B + 2 R sin C 整理化簡為同角三角函數(shù)2 + 4 sin ( B + ) ,由角的取值范圍借助正弦函數(shù)的最值情況求出 sin ( B + ) ∈ ( , 1 ],進而得出周長的最大值。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商人如果將進貨單價為 元的商品按每件 元出售,則每天可銷售 件,現(xiàn)在他采用提高售價,減少進貨量的辦法增加利潤.已知這種商品每件銷售價提高 元,銷售量就要減少 件,如果使得每天所賺的利潤最大,那么他應(yīng)將每件的銷售價定為( )
A. 元
B. 元
C. 元
D. 元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有2000名網(wǎng)購者在11月11日當(dāng)天于某購物網(wǎng)站進行網(wǎng)購消費(消費金額不超過1000元),其中有女士1100名,男士900名、該購物網(wǎng)站為優(yōu)化營銷策略,根據(jù)性別采用分層抽樣的方法從這2000名網(wǎng)購者中抽取200名進行分析,如下表:(消費金額單位:元) 女士消費情況:
消費金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
人數(shù) | 10 | 25 | 35 | 30 | x |
男士消費情況:
消費金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
人數(shù) | 15 | 30 | 25 | y | 5 |
附:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(K2= ,n=a+b+c+d)
(1)計算x,y的值;在抽出的200名且消費金額在[800,1000](單位:元)的網(wǎng)購者中隨機選出兩名發(fā)放網(wǎng)購紅包,求選出的兩名網(wǎng)購者都是男士的概率;
(2)若消費金額不低于600元的網(wǎng)購者為“網(wǎng)購達人”,低于600元的網(wǎng)購者為“非網(wǎng)購達人”,根據(jù)以上統(tǒng)計數(shù)據(jù)填寫2×2列聯(lián)表,并回答能否在犯錯誤的概率不超過0.05的前提下認(rèn)為“是否為‘網(wǎng)購達人’與性別有關(guān)?”
女士 | 男士 | 總計 | |
網(wǎng)購達人 | |||
非網(wǎng)購達人 | |||
總計 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.若命題p為真命題,命題q為假命題,則命題“p且q”為真命題
B.“ ”是“ ”的充分不必要條件
C.l為直線,α,β,為兩個不同的平面,若l⊥α,α⊥β,則l∥β
D.命題“?x∈R,2x>0”的否定是“?x0∈R, ≤0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了解各!秶鴮W(xué)》課程的教學(xué)效果,組織全市各學(xué)校高二年級全體學(xué)生參加了國學(xué)知識水平測試,測試成績從高到低依次分為A、B、C、D四個等級.隨機調(diào)閱了甲、乙兩所學(xué)校各60名學(xué)生的成績,得到如下的分布圖:
(Ⅰ)試確定圖中 與 的值;
(Ⅱ)若將等級A、B、C、D依次按照 分、80分、60分、50分轉(zhuǎn)換成分?jǐn)?shù),試分別估計兩校學(xué)生國學(xué)成績的均值;
(Ⅲ)從兩校獲得A等級的同學(xué)中按比例抽取5人參加集訓(xùn),集訓(xùn)后由于成績相當(dāng),決定從中隨機選2人代表本市參加省級比賽,求兩人來自同一學(xué)校的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an]的前n項和記為Sn , 且滿足Sn=2an﹣n,n∈N* (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)證明: +… (n∈N*)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O為△ABC的外心,若 + + = ,則M是△ABC的( )
A.重心(三條中線交點)
B.內(nèi)心(三條角平分線交點)
C.垂心(三條高線交點)
D.外心(三邊中垂線交點)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,(a∈R)
(1)若f(x)在x=0處取得極值,確定a的值.
(2)若f(x)在R上為增函數(shù),求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com