【題目】如圖,在四棱錐中,,,,.

1)證明:平面;

2)若為線段上一點,且,求直線與平面所成角的正弦值.

【答案】1)見解析(2.

【解析】

1)根據(jù),,利用勾股定理得到,再由,利用線面垂直的判定定理證明.

2)由,,易得,在平面內(nèi)過點軸垂直于,再結(jié)合(1)以,所在直線為軸建立空間直角坐標系,求得的坐標,平面的一個法向量,設(shè)直線與平面所成角為,則由求解.

1)因為,

所以,

所以.

,且,平面,平面,

所以平面.

2)因為,,

所以,

在平面內(nèi)過點軸垂直于,又由(1)知平面,

分別以,所在直線為軸建立如圖所示空間直角坐標系.

,,,.

因為

所以.

所以,,.

設(shè)平面的一個法向量為

,即,

.

設(shè)直線與平面所成角為,

.

所以直線與平面所成角的正弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體ABCDA1B1C1D1中,AA18AB3,AD8,點M是棱AD的中點,點N是棱AA1的中點,P是側(cè)面四邊形ADD1A1內(nèi)一動點(含邊界),若C1P∥平面CMN,則線段C1P長度的取值范圍是( 。

A.B.[4,5]C.[35]D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列是等差數(shù)列,其前項和為,數(shù)列是公比大于0的等比數(shù)列,且, , .

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)令,求數(shù)列的前項和為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學參加某個知識答題游戲節(jié)目,答題分兩輪,第一輪為“選題答題環(huán)節(jié)”第二輪為“輪流坐莊答題環(huán)節(jié)”.首先進行第一輪“選題答題環(huán)節(jié)”,答題規(guī)則是:每位同學各自從備選的5道不同題中隨機抽出3道題進行答題,答對一題加10分,答錯一題(不答視為答錯)減5分,已知甲能答對備選5道題中的每道題的概率都是,乙恰能答對備選5道題中的其中3道題;第一輪答題完畢后進行第二輪“輪流坐莊答題環(huán)節(jié)”,答題規(guī)則是:先確定一人坐莊答題,若答對,繼續(xù)答下一題…,直到答錯,則換人(換莊)答下一題…以此類推.例如若甲首先坐莊,則他答第1題,若答對繼續(xù)答第2題,如果第2題也答對,繼續(xù)答第3題,直到他答錯則換成乙坐莊開始答下一題,…直到乙答錯再換成甲坐莊答題,依次類推兩人共計答完20道題游戲結(jié)束,假設(shè)由第一輪答題得分期望高的同學在第二輪環(huán)節(jié)中最先開始作答,且記第道題也由該同學(最先答題的同學)作答的概率為),其中,已知供甲乙回答的20道題中,甲,乙兩人答對其中每道題的概率都是,如果某位同學有機會答第道題且回答正確則該同學加10分,答錯(不答視為答錯)則減5分,甲乙答題相互獨立;兩輪答題完畢總得分高者勝出.回答下列問題

1)請預測第二輪最先開始作答的是誰?并說明理由

2)①求第二輪答題中,;

②求證為等比數(shù)列,并求)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點為的坐標滿足圓方程,且圓心滿足.

(1)求橢圓的方程;

(2)過點的直線交橢圓、兩點,過垂直的直線交圓兩點,為線段中點,若的面積 ,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高中三個年級共有4000人,為了了解各年級學周末在家的學習情況,現(xiàn)通過分層抽樣的方法獲得相關(guān)數(shù)據(jù)如下(單位:小時),其中高一學生周末的平均學習時間記為.

高一:14 15 15.5 16.5 17 17 18 19

高二:15 16 16 16 17 17 18.5

高三:16 17 18 21.5 24

(1)求每個年級的學生人數(shù);

(2)從高三被抽查的同學中隨機抽取2人,求2人學習時間均超過的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)的極值;

(2)當時,,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè),分別是橢圓的左,右焦點,兩點分別是橢圓的上,下頂點,是等腰直角三角形,延長交橢圓點,且的周長為.

1)求橢圓的方程;

2)設(shè)點是橢圓上異于的動點,直線與直分別相交于兩點,點,求證:的外接圓恒過原點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)處有最大值,求的值;

2)當時,判斷的零點個數(shù),并說明理由.

查看答案和解析>>

同步練習冊答案