【題目】如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、FEF=,則下列結(jié)論中錯誤的是(

A.ACBEB.EF平面ABCD

C.三棱錐A-BEF的體積為定值D.異面直線AE,BF所成的角為定值

【答案】D

【解析】

A.通過線面的垂直關(guān)系可證真假;B.根據(jù)線面平行可證真假;C.根據(jù)三棱錐的體積計算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.

A.因為,所以平面,

又因為平面,所以,故正確;

B.因為,所以,且平面平面,

所以平面,故正確;

C.因為為定值,到平面的距離為,

所以為定值,故正確;

D.當,取,如下圖所示:

因為,所以異面直線所成角為,

,,取,如下圖所示:

因為,所以四邊形是平行四邊形,所以,

所以異面直線所成角為,且,

由此可知:異面直線所成角不是定值,故錯誤.

故選:D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系,.以坐標原點為極點,軸正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,點上的動點,的中點.

1)請求出點軌跡的直角坐標方程;

2)設點的極坐標為若直線經(jīng)過點且與曲線交于點,弦的中點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龍)、巳(蛇)、午(馬)、未(羊)、申(猴)、酉(雞)、戌(狗)、亥(豬),每一個人的出生年份對應了十二種動物中的一種,即自己的屬相.現(xiàn)有印著六種不同生肖圖案(包含馬、羊)的毛絨娃娃各一個,小張同學的屬相為馬,小李同學的屬相為羊,現(xiàn)在這兩位同學從這六個毛絨娃娃中各隨機取一個(不放回),則這兩位同學都拿到自己屬相的毛絨娃娃的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,多面體,平面平面,,的中點,上的點.

)若平面,證明:的中點;

(Ⅱ)若,,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,,,沿對角線折起,使點到達平面外的點的位置,

1)求證:平面平面

2)當平面平面時,求三棱錐的外接球的體積;

3)當為等腰三角形時,求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 )的左右焦點分別為, ,離心率為,點在橢圓上, , ,過與坐標軸不垂直的直線與橢圓交于, 兩點.

(Ⅰ)求橢圓的方程;

(Ⅱ)若, 的中點為,在線段上是否存在點,使得?若存在,求實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐E-ABCD中,底面ABCD為正方形,平面CDE.已知,

1)證明:平面平面ABCD

(2)求直線BE與平面ACE所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為坐標原點,點和點,動點滿足:.

1)求動點的軌跡曲線的方程并說明是何種曲線;

2)若拋物線的焦點恰為曲線的頂點,過點的直線與拋物線交于,兩點,,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當.

①求函數(shù)處的切線方程;

②定義其中,求;

2)當時,設,(為自然對數(shù)的底數(shù)),若對任意給定的,在上總存在兩個不同的,使得成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案