設(shè)定圓,動(dòng)圓過(guò)點(diǎn)且與圓相切,記動(dòng)圓圓心的軌跡為.
(1)求軌跡的方程;
(2)已知,過(guò)定點(diǎn)的動(dòng)直線(xiàn)交軌跡兩點(diǎn),的外心為.若直線(xiàn)的斜率為,直線(xiàn)的斜率為,求證:為定值.

(1);(2)見(jiàn)解析

解析試題分析:(1)求軌跡的方程,由題意定圓,動(dòng)圓過(guò)點(diǎn)且與圓相切,可知點(diǎn)在圓內(nèi),由此可得圓內(nèi)切于圓,可得,根據(jù)橢圓定義可知軌跡為橢圓,故可求出軌跡的方程;(2)求證:為定值,由題意直線(xiàn)斜率不為0,可設(shè)直線(xiàn), 設(shè)點(diǎn),,由,由根與系數(shù)關(guān)系得,寫(xiě)出直線(xiàn)的中垂線(xiàn)方程,與直線(xiàn)的中垂線(xiàn)方程,求出點(diǎn)的坐標(biāo),即得直線(xiàn)的斜率,從而可得為定值.
試題解析:(1)∵點(diǎn)在圓內(nèi) ∴圓內(nèi)切于圓

∴點(diǎn)的軌跡.的方程為                              5分
(2)由存在 ∴ 直線(xiàn)斜率不為0

設(shè)直線(xiàn)      設(shè)點(diǎn), 


直線(xiàn)的中垂線(xiàn)方程為:
  ∵ ∴即
 即
同理可得直線(xiàn)的中垂線(xiàn)方程為:                  7分
∴點(diǎn)的坐標(biāo)滿(mǎn)足

   9分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓=1(a>b>0)的離心率為,短軸的一個(gè)端點(diǎn)為M(0,1),直線(xiàn)l:y=kx-與橢圓相交于不同的兩點(diǎn)A、B.
(1)若AB=,求k的值;
(2)求證:不論k取何值,以AB為直徑的圓恒過(guò)點(diǎn)M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓=1(a>b>0),點(diǎn)P在橢圓上.
(1)求橢圓的離心率;
(2)設(shè)A為橢圓的左頂點(diǎn),O為坐標(biāo)原點(diǎn).若點(diǎn)Q在橢圓上且滿(mǎn)足AQ=AO,求直線(xiàn)OQ的斜率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓經(jīng)過(guò)點(diǎn),離心率,直線(xiàn)的方程為.

(1)求橢圓的方程;
(2)是經(jīng)過(guò)右焦點(diǎn)的任一弦(不經(jīng)過(guò)點(diǎn)),設(shè)直線(xiàn)與直線(xiàn)相交于點(diǎn),記的斜率分別為.問(wèn):是否存在常數(shù),使得?若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A為橢圓=1的右頂點(diǎn),點(diǎn)D(1,0),點(diǎn)P、B在橢圓上,.
 
(1) 求直線(xiàn)BD的方程;
(2) 求直線(xiàn)BD被過(guò)P、A、B三點(diǎn)的圓C截得的弦長(zhǎng);
(3) 是否存在分別以PB、PA為弦的兩個(gè)相外切的等圓?若存在,求出這兩個(gè)圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,動(dòng)點(diǎn)到兩定點(diǎn)構(gòu)成,且,設(shè)動(dòng)點(diǎn)的軌跡為。

(1)求軌跡的方程;
(2)設(shè)直線(xiàn)軸交于點(diǎn),與軌跡相交于點(diǎn),且,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓C1:+=1(a>b>0),拋物線(xiàn)C2:x2+by=b2.

(1)若C2經(jīng)過(guò)C1的兩個(gè)焦點(diǎn),求C1的離心率;
(2)設(shè)A(0,b),Q(3,b),又M,N為C1與C2不在y軸上的兩個(gè)交點(diǎn),若△AMN的垂心為B(0,b),且△QMN的重心在C2上,求橢圓C1和拋物線(xiàn)C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線(xiàn)E:y2=4x的焦點(diǎn)為F,準(zhǔn)線(xiàn)l與x軸的交點(diǎn)為A.點(diǎn)C在拋物線(xiàn)E上,以C為圓心,|CO|為半徑作圓,設(shè)圓C與準(zhǔn)線(xiàn)l交于不同的兩點(diǎn)M,N.

(1)若點(diǎn)C的縱坐標(biāo)為2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圓C的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知E(2,2)是拋物線(xiàn)C:y2=2px上一點(diǎn),經(jīng)過(guò)點(diǎn)(2,0)的直線(xiàn)l與拋物線(xiàn)C交于A,B兩點(diǎn)(不同于點(diǎn)E),直線(xiàn)EA,EB分別交直線(xiàn)x=-2于點(diǎn)M,N.
(1)求拋物線(xiàn)方程及其焦點(diǎn)坐標(biāo);
(2)已知O為原點(diǎn),求證:∠MON為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案