【題目】設(shè),,

從以下兩個命題中任選一個進行證明:

當(dāng)時函數(shù)恰有一個零點;

當(dāng)時函數(shù)恰有一個零點;

如圖所示當(dāng),的圖象“好像”只有一個交點,但實際上這兩個函數(shù)有兩個交點,請證明:當(dāng)時,兩個交點.

若方程恰有4個實數(shù)根,請結(jié)合的研究,指出實數(shù)k的取值范圍不用證明

【答案】(1)見解析; (2)見解析; (3).

【解析】

由函數(shù)的零點及方程的根的關(guān)系得:當(dāng)時,令,解得:,即函數(shù)恰有一個零點,且此零點為2,再用判別式判斷函數(shù)的零點個數(shù)

由二次方程區(qū)間根的問題得:,由韋達(dá)定理得:,,所以,

結(jié)合的研究,實數(shù)k的取值范圍為:,得解

當(dāng)時,,

,解得:

即函數(shù)恰有一個零點,且此零點為2,

證明:當(dāng)時,,

,解得:,

所以函數(shù)恰有一個零點,且此零點為

,

所以,

所以,

所以方程,有兩個不等實數(shù)根,記為,

由韋達(dá)定理得:,,所以,,

,

所以當(dāng)時,兩個交點.

結(jié)合的研究,實數(shù)k的取值范圍為:

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王在某景區(qū)內(nèi)銷售該景區(qū)紀(jì)念冊,紀(jì)念冊每本進價為5元,每銷售一本紀(jì)念冊需向該景區(qū)管理部門交費2元,預(yù)計這種紀(jì)念冊以每本20元的價格銷售時,小王一年可銷售2000本,經(jīng)過市場調(diào)研發(fā)現(xiàn),每本紀(jì)念冊的銷售價格在每本20元的基礎(chǔ)上每減少一元則增加銷售400本,而每增加一元則減少銷售100本,現(xiàn)設(shè)每本紀(jì)念冊的銷售價格為x元.

寫出小王一年內(nèi)銷售這種紀(jì)念冊所獲得的利潤與每本紀(jì)念冊的銷售價格的函數(shù)關(guān)系式,并寫出這個函數(shù)的定義域;

當(dāng)每本紀(jì)念冊銷售價格x為多少元時,小王一年內(nèi)利潤最大,并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)已知圓C過點P(1,1),且與圓M:關(guān)于直線對稱.

(1)求圓C的方程:

(2)設(shè)Q為圓C上的一個動點,求最小值;

(3)過點P作兩條相異直線分別與圓C交與A,B,且直線PA和直線PB的傾斜角互補,O為坐標(biāo)原點,試判斷直線OP與直線AB是否平行?請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將編號的小球放入編號為的盒子中,要求不允許有空盒子,且球與盒子的號不能相同,則不同的放球方法有(

A. 16 B. 12 C. 9 D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】身體素質(zhì)拓展訓(xùn)練中,人從豎直墻壁的頂點A沿光滑桿自由下滑到傾斜的木板上(人可看作質(zhì)點),若木板的傾斜角不同,人沿著三條不同路徑ABAC、AD滑到木板上的時間分別為t1、t2、t3,若已知AB、AC、AD與板的夾角分別為70o、90o105o,則(

A. t1>t2>t3 B. t1<t2<t3 C. t1=t2=t3 D. 不能確定t1t2、t3之間的關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點,PA⊥平面ABC,則四面體P-ABC的四個面中,直角三角形的個數(shù)有( 。

A. 4個B. 3個C. 2個D. 1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司試銷一種成本單價為500元的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y()與銷售單價x()之間的關(guān)系可近似看作一次函數(shù)ykxb(k≠0),函數(shù)圖象如圖所示.

(1)根據(jù)圖象,求一次函數(shù)ykxb(k≠0)的表達(dá)式;

(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價-成本總價)S元.試問銷售單價定為多少時,該公司可獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時,

(Ⅰ)求函數(shù)R上的解析式;

(Ⅱ)若,函數(shù),是否存在實數(shù)m使得的最小值為,若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種新產(chǎn)品投放市場一段時間后,經(jīng)過調(diào)研獲得了時間(天數(shù))與銷售單價(元)的一組數(shù)據(jù),且做了一定的數(shù)據(jù)處理(如表),并作出了散點圖(如圖)

表中.

(1)根據(jù)散點圖判斷,哪一個更適宜作價格關(guān)于時間的回歸方程類型?(不必說明理由)

(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;

(3)若該產(chǎn)品的日銷售量(件)與時間的函數(shù)關(guān)系為),求該產(chǎn)品投放市場第幾天的銷售額最高?最高為多少元?(結(jié)果保留整數(shù))

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為,.

查看答案和解析>>

同步練習(xí)冊答案