已知雙曲線x2-
y2
2
=1.
(1)求以點A(2,1)為中點的弦的方程;
(2)求過點A(2,1)的弦中點M的軌跡方程.
考點:雙曲線的簡單性質(zhì)
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)設(shè)A(2,1)是弦P1P2的中點,且P1(x1,y1),P2(x2,y2),利用點差法能求出以A(2,1)為中點的雙曲線的弦所在的直線方程.
(2)設(shè)M(x,y),則2x12-y12=2,2x22-y22=2,兩式相減,利用M是中點及斜率相等可求M得軌跡方程,從而得到其軌跡.
解答: 解:(1)設(shè)以A(2,1)為中點的弦兩端點為P1(x1,y1),P2(x2,y2),
則x1+x2=4,y1+y2=2.
又2x12-y12=2,①
2x22-y22=2,②
①-②得:2(x1+x2)(x1-x2)=(y1+y2)(y1-y2),
又據(jù)對稱性知x1≠x2,
∴A(2,1)為中點的弦所在直線的斜率k=4,
∴中點弦所在直線方程為y-1=4(x-2),即4x-y-7=0.
(2)設(shè)M(x,y),則x1+x2=2x,y1+y2=2y,
∵2x12-y12=2,2x22-y22=2,
∴4x(x1-x2)-2y(y1-y2)=0,
∴kP1P2=
2x
y
,
∵kAM=
y-1
x-2

2x
y
=
y-1
x-2
,
∴2x2-y2-4x+y=0,
即線段PQ的中點M的軌跡方程是2x2-y2-4x+y=0.
點評:本題考查直線與圓錐曲線的關(guān)系,求得直線P1P2的斜率是關(guān)鍵,考查點差法求斜率,考查分析與運算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用輾轉(zhuǎn)相除法求49與91的最大公約數(shù)時的需要運算的次數(shù)為(  )
A、1次B、2次C、3次D、4次

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若四邊ABCD滿足
AB
+
CD
=
0
,(
AB
-
DB
)•
AB
=0,則該四邊形是( 。
A、菱形B、矩形
C、直角梯形D、正方形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下表是關(guān)于宿州市服裝機械廠某設(shè)備的使用年限x(年)和所需要的維修費用y(萬元)的幾組統(tǒng)計數(shù)據(jù):
X23456
y2.23.85.56.57.0
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于的線性回歸方程;
(2)估計使用年限為10年時,維修費用為多少?
b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖直三棱柱中,AB⊥AC,AB=AC,D、E分別為AA1、B1C的中點,
(Ⅰ)證明:DE⊥平面BCC1
(Ⅱ)設(shè)B1C與平面BCD所成角的大小為30°,求二面角A-BD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(-2,-3),圓C:(x-4)2+(y-2)2=9,過P點作圓C的兩條切線,切點分別為A、B
(1)求過P、A、B三點的外接圓的方程;
(2)求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
OA
=(1,-3),|
OA
|=|
OB
|,
OA
OB
=0,則|
AB
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)生社團在對本校學(xué)生學(xué)習(xí)方法開展問卷調(diào)查的過程中發(fā)現(xiàn),在回收上來的1000份有效問卷中,同學(xué)們背英語單詞的時間安排共有兩種:白天背和晚上睡前背.為了研究背單詞時間安排對記憶效果的影響,該社團以5%的比例對這1000名學(xué)生按時間安排類型進行分層抽樣,并完成一項實驗.實驗方法是,使兩組學(xué)生記憶40個無意義音節(jié)(如XIQ、GEH),均要求在剛能全部記清時就停止識記,并在8小時后進行記憶檢測.不同的是,甲組同學(xué)識記結(jié)束后一直不睡覺,8小時后測驗;乙組同學(xué)識記停止后立刻睡覺,8小時后叫醒測驗.兩組同學(xué)識記停止8小時后的準(zhǔn)確回憶(保持)情況如圖(區(qū)間含左端點而不含右端點).

(1)估計這1000名被調(diào)查學(xué)生中停止后8小時40個音節(jié)的保持率不小于60%的人數(shù);
(2)從乙組準(zhǔn)確回憶單詞個數(shù)在[4,20)個范圍內(nèi)的學(xué)生中隨機選2人,求能準(zhǔn)確回憶[16,20)個單詞至少有一人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=cosx+
x2
2
-1.
(Ⅰ)求證:當(dāng)x≥0時,f(x)≥0;
(Ⅱ)若a∈R,證明:當(dāng)a≥1時,eax≥sinx-cosx+2對任意的x≥0恒成立.

查看答案和解析>>

同步練習(xí)冊答案