【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PB上,PD//平面MAC,PA=PD=,AB=4.
(I)求證:M為PB的中點;
(II)求二面角B-PD-A的大小;
(III)求直線MC與平面BDP所成角的正弦值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是七位評委為甲,乙兩名參賽歌手打出的分數(shù)的莖葉圖(其中m,n為數(shù)字0~9中的一個),則甲歌手得分的眾數(shù)和乙歌手得分的中位數(shù)分別為a和b,則一定有( )
A.a>b
B.a<b
C.a=b
D.a,b的大小與m,n的值有關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知橢圓C:(a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1,)中恰有三點在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,平面PAD⊥底面ABCD,其中底面ABCD為等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2,PA⊥PD,Q為PD的中點.
(Ⅰ)證明:CQ∥平面PAB;
(Ⅱ)求直線PD與平面AQC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若x,y∈[﹣1,1],x+y≠0有(x+y)[f(x)+f(y)]>0.
(1)判斷f(x)的單調(diào)性,并加以證明;
(2)解不等式 ;
(3)若f(x)≤m2﹣2am+1對所有x∈[﹣1,1],a∈[﹣1,1]恒成立.求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域為R的奇函數(shù)f(x)= ,其中h(x)是指數(shù)函數(shù),且h(2)=4.
(1)求函數(shù)f(x)的解析式;
(2)求不等式f(2x﹣1)>f(x+1)的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點P(m,n)的直線l與直線l0:x+2y+4=0垂直. (Ⅰ)若 ,且點P在函數(shù) 的圖像上,求直線l的一般式方程;
(Ⅱ)若點P(m,n)在直線l0上,判斷直線mx+(n﹣1)y+n+5=0是否經(jīng)過定點?若是,求出該定點的坐標;否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】張先生知道清晨從甲地到乙地有好、中、差三個班次的客車.但不知道具體誰先誰后.他打算:第一輛看后一定不坐,若第二輛比第一輛舒服,則乘第二輛;否則坐第三輛.問張先生坐到好車的概率和坐到差車的概率分別是( )
A. 、
B. 、
C. 、
D. 、
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的首項a1= ,公比q滿足q>0且q≠1,又已知a1 , 5a3 , 9a5成等差數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)令bn=log3 ,記Tn= ,是否存在最大的整數(shù)m,使得對任意n∈N* , 均有Tn> 成立?若存在,求出m,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com