【題目】已知定義在上的函數(shù).

1)當(dāng)時(shí),解不等式;

2)若對(duì)任意恒成立,求的取值范圍.

【答案】(1);(2).

【解析】

(1) ,則臨界點(diǎn)為,分別討論,,,去掉絕對(duì)值號(hào),即可求解.

(2) 當(dāng)時(shí)可知對(duì)任意恒成立;當(dāng)時(shí), 通過討論 的不同取值,,去掉絕對(duì)值號(hào),求出的最小值,從而可求 的取值范圍.

解:(1)當(dāng)時(shí),.

當(dāng)時(shí),原不等式可化為,解得.結(jié)合得,此時(shí).

當(dāng)時(shí),原不等式可化為,解得,結(jié)合得,此時(shí)不存在.

當(dāng)時(shí),原不等式可化為,解得,結(jié)合得,此時(shí).

綜上,原不等式的解集為.

(2)由于對(duì)任意恒成立,故當(dāng)時(shí)

不等式對(duì)任意恒成立,此時(shí).

當(dāng),即時(shí),由于,記

下面對(duì)分三種情況討論.

當(dāng)時(shí),,在區(qū)間內(nèi)單調(diào)遞減.

當(dāng)時(shí),,在區(qū)間內(nèi)單調(diào)遞增.

當(dāng)時(shí),,在區(qū)間內(nèi)單調(diào)遞增.

綜上,可得.要使得對(duì)任意恒成立,只需

,得.結(jié)合,得.

綜上,的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某旅游區(qū)擬建一主題游樂園,該游樂區(qū)為五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為主題游樂區(qū),四邊形區(qū)域?yàn)锽CDE為休閑游樂區(qū),AB、BC,CD,DE,EA,BE為游樂園的主要道路不考慮寬.

I求道路BE的長(zhǎng)度;

求道路AB,AE長(zhǎng)度之和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,證明:當(dāng)時(shí),;

(2)若只有一個(gè)零點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過橢圓右焦點(diǎn)的直線交橢圓與A,B兩點(diǎn),為其左焦點(diǎn),已知的周長(zhǎng)為8,橢圓的離心率為.

1)求橢圓的方程;

2)是否存在圓心在原點(diǎn)的圓,使得該圓任意一條切線與橢圓恒有兩個(gè)交點(diǎn),?若存在,求出該圓的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱中,中點(diǎn),上的一點(diǎn),.

(1)若平面,求證:.

(2)平面將棱柱分割為兩個(gè)幾何體,記上面一個(gè)幾何體的體積為,下面一個(gè)幾何體的體積為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,不與坐標(biāo)軸垂直的直線與拋物線交于兩點(diǎn),當(dāng)時(shí),.

1)求拋物線的標(biāo)準(zhǔn)方程;

2)若過定點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明:直線過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線的焦點(diǎn),是拋物線上一點(diǎn)過三點(diǎn)的圓的圓心為,點(diǎn)到拋物線的準(zhǔn)線的距離為.

1)求拋物線的方程;

2)若點(diǎn)的橫坐標(biāo)為4,過的直線與拋物線有兩個(gè)不同的交點(diǎn),直線與圓交于點(diǎn),且點(diǎn)的橫坐標(biāo)大于4,求當(dāng)取得最小值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為比較甲、乙兩名高中學(xué)生的數(shù)學(xué)素養(yǎng),對(duì)課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進(jìn)行指標(biāo)測(cè)驗(yàn)(指標(biāo)值滿分為100分,分值高者為優(yōu)),根據(jù)測(cè)驗(yàn)情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述不正確的是(

A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng)

C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)學(xué)運(yùn)算最強(qiáng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列前5項(xiàng)和為50, ,數(shù)列的前項(xiàng)和為 , .

(Ⅰ)求數(shù)列 的通項(xiàng)公式;

(Ⅱ)若數(shù)列滿足, ,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案