精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)

已知函數,.

(Ⅰ) 求函數在點(1,)處的切線方程;

(II) 若函數在區(qū)間上均為增函數,求的取值范圍;

(Ⅲ) 若方程有唯一解,試求實數的值.

 

【答案】

(Ⅰ)

(II)

(Ⅲ)當時原方程有唯一解的充要條件是

【解析】解:(Ⅰ)因為,所以切線的斜率…………………2分

,故所求切線方程為,即…………………4分

(II)因為,又x>0,所以當x>2時,;當0<x<2時,

上遞增,在(0,2)上遞減………………………………5分

,所以上遞增,在上遞減……………6分

在區(qū)間上均為增函數,則,

解得…………8分

(Ⅲ) 原方程等價于,令,則原方程即為

因為當時原方程有唯一解,所以函數的圖象在y軸右側有唯一的交點

……………10分

又, 且x>0,所以當x>4時,;

當0<x<4時,

上遞增,在(0,4)上遞減.

故h(x)在x=4處取得最小值

從而當時原方程有唯一解的充要條件是……………12分

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(文) (本小題滿分12分已知函數y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數的值域和最小正周期;
(2)求函數的遞減區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)已知函數,且。①求的最大值及最小值;②求的在定義域上的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業(yè)建設工程三類,這三類工程所含項目的個數分別占總數的.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案