函數(shù)f(x)=x2在x=1處的切線的斜率為
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出原函數(shù)的導(dǎo)函數(shù),求得f′(1)的值,即為函數(shù)f(x)=x2在x=1處的切線的斜率.
解答: 解:由f(x)=x2,得f′(x)=2x,
∴f′(1)=2,
即函數(shù)f(x)=x2在x=1處的切線的斜率為2.
故答案為:2.
點(diǎn)評:本題考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程,函數(shù)在x=x0處的導(dǎo)數(shù),就是曲線上過點(diǎn)(x0,y0)的切線的斜率,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2cosα,2),
b
=(2,2sinα) 求|
a
+
b
|的最大值及相應(yīng)的α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)的定義域是[-3,3],則函數(shù)g(x)=
f(3x)
x+1
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
mx2-2mx+m+2
的定義域?yàn)镽,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)a、b、c滿足(b+a2-3lna)2+(c-d+4)2=0,則(a-c)2+(b-d)2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x=
2
3
kπ-
π
18
(k∈Z),若 x∈[0,π],則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
2xx<2
log
1
3
x,
x≥2
,則f(f(log23))等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos2x
1+sin2x
=
1
5
,則tanx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+1
x+2
,a∈Z,是否存在整數(shù)a,使函數(shù)f(x)在x∈[-1,+∞)上遞減,并且f(x)不恒為負(fù)?若存在,找出一個滿足條件的a,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案