【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,點,曲線 ,以極點為坐標(biāo)原點,極軸為軸正半軸建立直角坐標(biāo)系.

(1)在直角坐標(biāo)系中,求點的直角坐標(biāo)及曲線的參數(shù)方程;

(2)設(shè)點為曲線上的動點,求的取值范圍.

【答案】(1), , 為參數(shù));(2) .

【解析】試題分析:

1)由公式可化點的極坐標(biāo)為直角坐標(biāo),也可化曲線的極坐標(biāo)方程為直角坐標(biāo)方程,由直角坐標(biāo)方程知曲線是圓,且圓心坐標(biāo)與半徑都已知,可由圓的標(biāo)準(zhǔn)參數(shù)方程可得;

2)利用參數(shù)方程設(shè)出點坐標(biāo),由兩點間距離公式求得,應(yīng)用兩角和與差的正弦公式化表達(dá)式為形式,再結(jié)合正弦函數(shù)性質(zhì)可得取值范圍.

試題解析:

(1)由,解得,

因為,所以, ,即

,

所以曲線的參數(shù)方程為: , 為參數(shù));

(2)不妨設(shè),

,

因為,所以,

因此, 的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角三角形中,邊a、b是方程x2﹣2 x+2=0的兩根,角A、B滿足:2sin(A+B)﹣ =0,求角C的度數(shù),邊c的長度及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,AB⊥DA,CE= ,∠ADC= ;E為AD邊上一點,DE=1,EA=2,∠BEC=

(1)求sin∠CED的值;
(2)求BE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某食品店為了了解氣溫對銷售量的影響,隨機(jī)記錄了該店1月份中5天的日銷售量(單位:千克)與該地當(dāng)日最低氣溫(單位: )的數(shù)據(jù),如下表:

x

2

5

8

9

11

y

12

10

8

8

7

(1)求出的回歸方程;

(2)判斷之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為,請用所求回歸方程預(yù)測該店當(dāng)日的銷售量;

(3)設(shè)該地1月份的日最低氣溫,其中近似為樣本平均數(shù), 近似為樣本方差,求.

附:①回歸方程中, .

, ,若,則 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi)有n(n∈N*)條直線,其中任何兩條不平行,任何三條不過同一點,若這n條直線把平面分成f(n)個平面區(qū)域,則f(3)=;f(n)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓和定點,由圓外一點向圓引切線,切點為,且滿足

(1)求實數(shù)滿足的等量關(guān)系;

(2)求線段長的最小值;

(3)若以為圓心所作的圓與圓有公共點,試求半徑取最小值時圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中, 的中點, .

(1)求證: 平面;

(2)當(dāng)時,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“累積凈化量”是空氣凈化器質(zhì)量的一個重要衡量指標(biāo),它是指空氣凈化從開始使用到凈化效率為50%時對顆粒物的累積凈化量,以克表示,根據(jù)《空氣凈化器》國家標(biāo)準(zhǔn),對空氣凈化器的累計凈化量有如下等級劃分:

累積凈化量(克)

12以上

等級

為了了解一批空氣凈化器(共5000臺)的質(zhì)量,隨機(jī)抽取臺機(jī)器作為樣本進(jìn)行估計,已知這臺機(jī)器的累積凈化量都分布在區(qū)間中,按照、、、、均勻分組,其中累積凈化量在的所有數(shù)據(jù)有:4.5,4.6,5.2,5.3,5.7和5.9,并繪制了頻率分布直方圖,如圖所示:

(1)求的值及頻率分布直方圖中的值;

(2)以樣本估計總體,試估計這批空氣凈化器(共5000臺)中等級為的空氣凈化器有多少臺?

(3)從累積凈化量在的樣本中隨機(jī)抽取2臺,求恰好有1臺等級為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△OAB的頂點坐標(biāo)為O(0,0),A(2,9),B(6,﹣3),點P的橫坐標(biāo)為14,且 ,點Q是邊AB上一點,且 =0.
(1)求實數(shù)λ的值與點P的坐標(biāo);
(2)求點Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案