【題目】已知圓柱底面半徑為1,高為,ABCD是圓柱的一個(gè)軸截面,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)沿著圓柱的側(cè)面到達(dá)點(diǎn)D,其距離最短時(shí)在側(cè)面留下的曲線如圖所示.將軸截面ABCD繞著軸逆時(shí)針旋轉(zhuǎn)后,邊與曲線相交于點(diǎn)P

(Ⅰ)求曲線長度;

(Ⅱ)當(dāng)時(shí),求點(diǎn)到平面APB的距離;

(Ⅲ)證明:不存在,使得二面角的大小為

【答案】(Ⅰ) (Ⅱ) 不存在

【解析】試題分析:(Ⅰ)在側(cè)面展開圖中根據(jù)幾何性質(zhì)求解;(Ⅱ) 建立如圖所示的空間直角坐標(biāo)系,求出平面ABP的一個(gè)法向量及向量 ,利用空間向量點(diǎn)到直線距離公式求解;(Ⅲ)假設(shè)存在滿足要求的,在空間坐標(biāo)系中求出法向量,根據(jù)空間向量夾角余弦公式,列出關(guān)于的方程,看是否有解即可.

試題解析:(Ⅰ) 在側(cè)面展開圖中為BD的長,其中AB = AD = π,

的長為;

(Ⅱ)當(dāng)時(shí),建立如圖所示的空間直角坐標(biāo)系,

則有、、,

、、

設(shè)平面ABP的法向量為,則,

取z = 2得,所以點(diǎn)C1到平面PAB的距離為;

注:本題也可以使用等積法求解.

(Ⅲ) 假設(shè)存在滿足要求的,

在(II)的坐標(biāo)系中,

,

設(shè)平面ABP的法向量為,則

x1 = 1得,

又平面ABD的法向量為

由二面角的大小為,

,∴時(shí),均有,與上式矛盾.

所以不存在使得二面角的大小為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是等差數(shù)列,是等比數(shù)列,且,則下列結(jié)論正確的是( )

A. B.

C. D. ,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是平行四邊行, 平面, // , ,

(1)證明: //平面;

(2)求證:平面平面;

(3)求直線與平面所成角的正弦值;

(4)求二面角 的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圓上有四個(gè)不同的點(diǎn)到直線的距離為2,則的取值范圍是(  )

A. (-12,8) B. (-8,12) C. (-13,17) D. (-17,13)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是平行四邊形,側(cè)面是邊長為2的正三角形, , .

(Ⅰ)求證:平面平面;

(Ⅱ)設(shè)是棱上的點(diǎn),當(dāng)平面時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A1,∠A2,…,∠An為凸多邊形的內(nèi)角,lg sin A1+lg sin A2++lg sin An=0,則這個(gè)多邊形是(  )

A. 正六邊形 B. 梯形

C. 矩形 D. 含銳角的菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中 , 是自然對(duì)數(shù)的底數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)設(shè)函數(shù),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)的發(fā)展,移動(dòng)支付(又稱手機(jī)支付)越來越普通,某學(xué)校興趣小組為了了解移動(dòng)支付在大眾中的熟知度,對(duì)15-65歲的人群隨機(jī)抽樣調(diào)查,調(diào)查的問題是“你會(huì)使用移動(dòng)支付嗎?”其中,回答“會(huì)”的共有個(gè)人.把這個(gè)人按照年齡分成5組:第1組,第2組,第3組,第4組,第5組,然后繪制成如圖所示的頻率分布直方圖.其中,第一組的頻數(shù)為20.

(1)求的值,并根據(jù)頻率分布直方圖估計(jì)這組數(shù)據(jù)的眾數(shù);

(2)從第1,3,4組中用分層抽樣的方法抽取6人,求第1,3,4組抽取的人數(shù);

(3)在(2)抽取的6人中再隨機(jī)抽取2人,求所抽取的2人來自同一個(gè)組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知常數(shù),解關(guān)于的不等式

查看答案和解析>>

同步練習(xí)冊(cè)答案