【題目】設(shè)函數(shù),曲線通過點(diǎn),且在點(diǎn)處的切線垂直于軸.

(1)用分別表示;

(2)當(dāng)取得最小值時(shí),求函數(shù)的單調(diào)區(qū)間.

【答案】(1),;(2)的減區(qū)間為;增區(qū)間為.

【解析】分析:(1)求函數(shù)的導(dǎo)數(shù),利用已知條件和導(dǎo)數(shù)的幾何意義,即可用分別表示;

(2)當(dāng)取得最小值時(shí),求得,的值.寫出函數(shù)的解析式,根據(jù)求導(dǎo)法則求出,令=0求出的值,分區(qū)間討論的正負(fù),即可得到函數(shù)的單調(diào)區(qū)間.

詳解:解(1)因?yàn)?/span>,所以

又因?yàn)榍通過點(diǎn),

,而,從而.

又曲線處的切線垂直于軸,

,即,因此.

(2)由(1)得,

故當(dāng)時(shí),取得最小值.

此時(shí)有.

從而,,

,

所以.

,解得.

當(dāng)時(shí),,故上為減函數(shù);

當(dāng)時(shí),,故上為增函數(shù).

當(dāng)時(shí),,故上為減函數(shù).

由此可見,函數(shù)的單調(diào)遞減區(qū)間為;單調(diào)遞增區(qū)間為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在ABC中,角A,B,C的對邊分別為a,b,c,若△ABC為銳角三角形,且滿足sinB(1+2cosC)=2sinAcosC+cosAsinC,則下列等式成立的是( 。
A.a=2b
B.b=2a
C.A=2B
D.B=2A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知sin(A+C)=8sin2
(Ⅰ)求cosB;
(Ⅱ)若a+c=6,△ABC面積為2,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線通過點(diǎn),且在點(diǎn)處的切線垂直于軸.

(1)用分別表示;

(2)當(dāng)取得最小值時(shí),求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種零件按質(zhì)量標(biāo)準(zhǔn)分為1,2,3,4,5五個(gè)等級.現(xiàn)從一批該零件中隨機(jī)抽取20個(gè),對其等級進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下:

(1)在抽取的20個(gè)零件中,等級為5的恰有2個(gè),求;

(2)在(1)的條件下,從等級為3和5的所有零件中,任意抽取2個(gè),求抽取的2個(gè)零件等級恰好相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠今年1月、2月、3月生產(chǎn)某產(chǎn)品分別為1萬件、1.2萬件、1.3萬件,為了估計(jì)以后每月的產(chǎn)量,以這三個(gè)月的產(chǎn)量為依據(jù),用一個(gè)函數(shù)模擬該產(chǎn)品的月產(chǎn)量,與月份的關(guān)系,模擬函數(shù)可以選用二次函數(shù)或函數(shù)、、為常數(shù))已知四月份該產(chǎn)品的產(chǎn)量為1.37萬件,請問用以上哪個(gè)函數(shù)作模擬函數(shù)較好?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)exf(x)(e≈2.71828…是自然對數(shù)的底數(shù))在f(x)的定義域上單調(diào)遞增,則稱函數(shù)f(x)具有M性質(zhì).下列函數(shù)中所有具有M性質(zhì)的函數(shù)的序號為
①f(x)=2x②f(x)=3x③f(x)=x3④f(x)=x2+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐S﹣ABC及其三視圖中的正視圖和側(cè)視圖如圖所示,則該三棱錐S﹣ABC的外接球的表面積為(
A.32π
B.
C.
D. π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系xOy中,過點(diǎn)P(﹣1,﹣2)的直線l的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsinθtanθ=2a(a>0),直線l與曲線C相交于不同的兩點(diǎn)M、N.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若|PM|=|MN|,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案