【題目】為調查某校學生每周課外閱讀的情況,采用分層抽樣的方法,收集100位學生每周課外閱讀時間的樣本數(shù)據(jù)(單位:小時).根據(jù)這100個數(shù)據(jù),制作出學生每周課外閱讀時間的頻率分布直方圖(如圖).
(1)估計這100名學生每周課外閱讀的平均數(shù)和樣本方差(同一組數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)由頻率分布直方圖知,該校學生每周課外閱讀時間近似服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
①求;
②若該校共有10000名學生,記每周課外閱讀時間在區(qū)間的人數(shù)為,試求.
參數(shù)數(shù)據(jù):,若,,.
科目:高中數(shù)學 來源: 題型:
【題目】某鮮花小鎮(zhèn)圈定一塊半徑為1百米的圓形荒地,準備建成各種不同鮮花景觀帶.為了便于游客觀賞,準備修建三條道路AB,BC,CA,其中A,B,C分別為圓上的三個進出口,且A,B分別在圓心O的正東方向與正北方向上,C在圓心O南偏西某一方向上.在道路AC與BC之間修建一條直線型水渠MN種植水生觀賞植物黃鳶尾(其中點M,N分別在BC和CA上,且M在圓心O的正西方向上,N在圓心O的正南方向上),并在區(qū)域MNC內(nèi)種植柳葉馬鞭草.
(1)求水渠MN長度的最小值;
(2)求種植柳葉馬鞭草區(qū)域MNC面積的最大值(水渠寬度忽略不計).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市場研究人員為了了解產(chǎn)業(yè)園引進的甲公司前期的經(jīng)營狀況,對該公司2018年連續(xù)六個月的利潤進行了統(tǒng)計,并根據(jù)得到的數(shù)據(jù)繪制了相應的折線圖,如圖所示
(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼之間的關系,求關于的線性回歸方程,并預測該公司2019年3月份的利潤;
(2)甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,現(xiàn)有,兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用個月,但新材料的不穩(wěn)定性會導致材料損壞的年限不相同,現(xiàn)對,兩種型號的新型材料對應的產(chǎn)品各件進行科學模擬測試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計如下表:
使用壽命 材料類型 | 個月 | 個月 | 個月 | 個月 | 總計 |
如果你是甲公司的負責人,你會選擇采購哪款新型材料?
參考數(shù)據(jù):,.參考公式:回歸直線方程為,其中 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)+(ω≥0,|φ|<π)的圖象與直線y=c(<c<)的三個相鄰交點的橫坐標為2,6,18,若a=f(lg),b=f(lg2),則以下關系式正確的是( 。
A. a+b=0B. a﹣b=0C. a+b=1D. a﹣b=1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+2|x+1|.
(1)當a=2時,解不等式f(x)>4.
(2)若不等式f(x)<3x+4的解集是{x|x>2},求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a、b、c為的三邊長,直線的方程為,圓.
(1)若為直角三角形,c為斜邊長,且直線與圓M相切.求c的值;
(2)已知為坐標原點,點,,,,平行于ON的直線h與圓M相交于R,兩點,且,求直線h的方程:
(3)若為正三角形,對于直線上任意一點P,在圓上總存在一點,使得線段的長度為整數(shù),求c的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖已知四棱錐 P ABCD 的底面是邊長為 6 的正方形,側棱 PA 的長為 8,且垂直于底面,點 M . N 分別是 DC .AB 的中點。
求:(1)異面直線 PM 與 CN 所成角的正切值;
(2)四棱錐 P ABCD 的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果有窮數(shù)列、、、、(為正整數(shù))滿足條件、、,即,我們稱其為“對稱數(shù)列”.例如,數(shù)列、、、、與數(shù)列、、、、、都是“對稱數(shù)列”.
(1)設是項的“對稱數(shù)列”,其中、、、是等差數(shù)列,且,,依次寫出的每一項;
(2)設是項的“對稱數(shù)列”,其中、、、是首項為,公比為的等比數(shù)列,求各項的和;
(3)設是項的“對稱數(shù)列”,其中、、、是首項為,公差為的等差數(shù)列,求前項的和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調區(qū)間和極值;
(2)若不等式在區(qū)間上恒成立,求實數(shù)的取值范圍;
(3)求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com