已知:函數(shù)fn(x)(n∈N*)的定義域?yàn)椋?∞,0)∪(0,+∞),其中f1(x)=x+1+
1
x
,并且當(dāng)n>1且n∈N*時(shí),滿足fn(x)-fn-1(x)=xn+
1
xn

(1)求函數(shù)fn(x)(n∈N*)的解析式;
(2)當(dāng)n=1,2,3時(shí),分別研究函數(shù)fn(x)的單調(diào)性與值域;
(3)借助(2)的研究過程或研究結(jié)論,提出一個(gè)類似(2)的研究問題,并寫出問題的研究過程與研究結(jié)論.
【第(3)小題將根據(jù)你所提出問題的質(zhì)量,以及解決所提出問題的情況進(jìn)行分層評(píng)分】
(1)由于
f2(x)-f1(x)=x2+
1
x2
f3(x)-f2(x)=x3+
1
x3
fn(x)-fn-1(x)=xn+
1
xn
;                           (2分)
所以fn(x)=xn+xn-1+…+x+1+
1
x
+…+
1
xn-1
+
1
xn
;                  (4分)
(2)(每小題結(jié)論正確(1分),證明(1分),共6分)
當(dāng)n=1時(shí),f1(x)=x+1+
1
x
,易證函數(shù)的單調(diào)遞增區(qū)間為(-∞,-1),(1,+∞);
單調(diào)遞減區(qū)間為(-1,0),(0,1);值域?yàn)椋?∞,-1]∪[3,+∞)
當(dāng)n=2時(shí),f2(x)=x2+x+1+
1
x
+
1
x2
f2(x)=(x+
1
x
+
1
2
)2-
5
4
,易證函數(shù)的單調(diào)遞增區(qū)間為(-1,0),(1,+∞;單位遞減區(qū)間為(-∞,-1),(0,1);因此函數(shù)在(-∞,0)值域?yàn)閇f2(-1),+∞),在(0,+∞)上值域?yàn)閇5,+∞)
因此函數(shù)f2(x)=x2+x+1+
1
x
+
1
x2
值域?yàn)閇1,+∞)
當(dāng)n=3時(shí),f3(x)=x2+x+1+
1
x
+
1
x2
+x3+
1
x3
=f2(x)+x3+
1
x3

易證f2(x)、x3+
1
x3
,在(0,1)單調(diào)遞減,在(1,+∞)單調(diào)遞增,
所以f3(x)=x2+x+1+
1
x
+
1
x2
+x3+
1
x3
在(0,1)單調(diào)遞減,在(1,+∞)單調(diào)遞增.
由于f3(x)=x3+x2+x+1+
1
x
+
1
x2
+
1
x3
=(
1-x4
1-x
)(1+
1
x3
)-1
,用定義易證f3(x)=x3+x2+x+1+
1
x
+
1
x2
+
1
x3
在(-∞,-1)單調(diào)遞增,在(-1,0)上單調(diào)遞減.f3(x)=x3+x2+x+1+
1
x
+
1
x2
+
1
x3
的值域?yàn)椋?∞,-1]∪[7,+∞)
(3)以下給出若干解答供參考,評(píng)分方法參考本小題閱卷說明:
第一類問題
結(jié)論一、f4(x)=x4+x3+x2+x+1+
1
x
+
1
x2
+
1
x3
+
1
x4
單調(diào)遞增區(qū)間為(-1,0),(1,+∞)單調(diào)遞減區(qū)間為(-∞,-1),(0,1);值域?yàn)閇1,+∞);
結(jié)論二、f5(x)=x5+x4+x3+x2+x+1+
1
x
+
1
x2
+
1
x3
+
1
x4
+
1
x5
單調(diào)遞增區(qū)間為(-∞,-1),(1,+∞)
;單調(diào)遞減區(qū)間為(0,1),(-1,0),值域?yàn)椋?∞,-1]∪[11,+∞)
 解法及評(píng)分說明:解法與f3(x)=x3+x2+x+1+
1
x
+
1
x2
+
1
x3
類同,結(jié)論分2分,證明正確得2分,共4分;
第二類問題
結(jié)論三、當(dāng)x>0時(shí),fn(x)=xn+xn-1+…+x+1+
1
x
+…+
1
xn-1
+
1
xn

在(0,1)單調(diào)遞減,在(1,+∞)單調(diào)遞增,值域?yàn)閇2n+1,+∞)
 結(jié)論四、當(dāng)x<0且n為奇數(shù)時(shí),fn(x)=xn+xn-1+…+x+1+
1
x
+…+
1
xn-1
+
1
xn
在(-1,0)單調(diào)遞減,在(-∞,-1)單調(diào)遞增;值域?yàn)椋?∞,-1];
結(jié)論五、當(dāng)x<0且n為偶數(shù)時(shí),fn(x)=xn+xn-1+…+x+1+
1
x
+…+
1
xn-1
+
1
xn
在(-∞,-1)單調(diào)遞減,在(-1,0)單調(diào)遞增;值域?yàn)閇1,+∞);
解法及評(píng)分說明:結(jié)論三的單調(diào)性證明可以用數(shù)學(xué)歸納法完成;即;x>0時(shí).
①當(dāng)n=1時(shí),f1(x)=x+1+
1
x
,用定義易證函數(shù)在(0,1)單調(diào)遞減;在(1,+∞)上單調(diào)遞增;計(jì)算得值域?yàn)椋?∞,-1]∪[3,+∞)
 ②設(shè)函數(shù)fn(x)=xn+xn-1+…+x+1+
1
x
+…+
1
xn-1
+
1
xn
(n∈N*)在(0,1)單調(diào)遞減;在(1,+∞)
上單調(diào)遞增;計(jì)算得值域?yàn)閇2n+1,+∞)
 則fn+1(x)=fn(x)+xn+1+
1
xn+1
,對(duì)于任意0<x1<x2,fn+1(x2)-fn+1(x1) 
=fn(x2)-fn(x1)+
xn+12
+
1
xn+12
-
xn+11
-
1
xn+11
 
=fn(x2)-fn(x1)+(
xn+12
-
xn+11
)(1-
1
xn+11
xn+12
)
,易證函數(shù)fn+1(x)=fn(x)+xn+1+
1
xn+1
在(0,1)
單調(diào)遞減,在(1,+∞)上單調(diào)遞增;值域?yàn)閇2(n+1)+1,+∞).
所以由①、②可得結(jié)論成立.
結(jié)論四及結(jié)論五的證明,可以先求和,后用定義進(jìn)行證明,即:fn(x)=(
1-xn+1
1-x
)×(1+
1
xn
)-1
,
fn(x2)-fn(x1)=
(
xn+12
-
xn+11
)(
1
xn1
xn2
-1)+(
xn2
-
xn1
)(x2x1-
1
xn+11
xn+12
)
(1-x1)(1-x2)
,容易獲得結(jié)論的證明.
解法及評(píng)分說明:結(jié)論分3分,證明正確得3分,共6分;
第三類問題
結(jié)論六:當(dāng)n為奇數(shù)時(shí),fn(x)=xn+xn-1+…+x+1+
1
x
+…+
1
xn-1
+
1
xn
在(-1,0),(0,1)
單調(diào)遞減,在(-∞,-1),(1,+∞)單調(diào)遞增;值域?yàn)椋?∞,-1]∪[2n+1,+∞);
結(jié)論七:當(dāng)n為偶數(shù)時(shí)單調(diào)遞增區(qū)間為(-1,0),(1,+∞),單調(diào)遞減區(qū)間為(-∞,-1),(0,1)
;值域?yàn)閇1,+∞);
結(jié)論八:當(dāng)n為奇數(shù)時(shí),fn(x)=xn+xn-1+…+x+1+
1
x
+…+
1
xn-1
+
1
xn
在(-1,0),(0,1)單調(diào)遞減,在(-∞,-1),(1,+∞)單調(diào)遞增;值域?yàn)椋?∞,-1]∪[2n+1,+∞);
當(dāng)n為偶數(shù)時(shí)單調(diào)遞增區(qū)間為(-1,0),(1,+∞),單調(diào)遞減區(qū)間為(-∞,-1),(0,1);值域?yàn)閇1,+∞);
解法及評(píng)分說明:解法與第二類問題類同.結(jié)論分4分,求解正確得4分,共8分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實(shí)數(shù)集上的函數(shù)fn(x)=xn,n∈N*,其導(dǎo)函數(shù)記為fn′(x),且滿足:f2′[x1+
1
λ
(x2-x1)]=
f2(x2)-f2(x1)
x2-x1
,λ,x1,x2
為常數(shù).
(Ⅰ)試求λ的值;
(Ⅱ)設(shè)函數(shù)f2n-1(x)與fn(1-x)的乘積為函數(shù)F(x),求F(x)的極大值與極小值;
(Ⅲ)若gn(x)=ex•fn(x),試證明關(guān)于x的方程
gn(1+x)
gn+1(1+x)
=
λn-1
λn+1-1
在區(qū)間(0,2)上有唯一實(shí)數(shù)根;記此實(shí)數(shù)根為x(n),求x(n)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實(shí)數(shù)集上的函數(shù)fn(x)=xn,n∈N*,其導(dǎo)函數(shù)記為f'n(x),且滿足:f2(ξ2)=f2(ξ1)+(ξ2-ξ1)f2[ξ1+
1
λ
(ξ2-ξ1)]
(ξ1≠ξ2),λ,ξ1,ξ2為常數(shù).
(Ⅰ)試求λ的值;
(Ⅱ)設(shè)函數(shù)f2n-1(x)與fn(1-x)的乘積為函數(shù)F(x),求F(x)的極大值與極小值;
(Ⅲ)試討論關(guān)于x的方程
f′n(1+x)
f′n+1(1+x)
=
λn-1
λn+1-1
在區(qū)間(0,1)上的實(shí)數(shù)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•崇明縣一模)已知:函數(shù)fn(x)(n∈N*)的定義域?yàn)椋?∞,0)∪(0,+∞),其中f1(x)=x+1+
1
x
,并且當(dāng)n>1且n∈N*時(shí),滿足fn(x)-fn-1(x)=xn+
1
xn

(1)求函數(shù)fn(x)(n∈N*)的解析式;
(2)當(dāng)n=1,2,3時(shí),分別研究函數(shù)fn(x)的單調(diào)性與值域;
(3)借助(2)的研究過程或研究結(jié)論,提出一個(gè)類似(2)的研究問題,并寫出問題的研究過程與研究結(jié)論.
【第(3)小題將根據(jù)你所提出問題的質(zhì)量,以及解決所提出問題的情況進(jìn)行分層評(píng)分】

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年上海市崇明縣高考數(shù)學(xué)一模試卷(文理合卷)(解析版) 題型:解答題

已知:函數(shù)fn(x)(n∈N*)的定義域?yàn)椋?∞,0)∪(0,+∞),其中,并且當(dāng)n>1且n∈N*時(shí),滿足
(1)求函數(shù)fn(x)(n∈N*)的解析式;
(2)當(dāng)n=1,2,3時(shí),分別研究函數(shù)fn(x)的單調(diào)性與值域;
(3)借助(2)的研究過程或研究結(jié)論,提出一個(gè)類似(2)的研究問題,并寫出問題的研究過程與研究結(jié)論.
【第(3)小題將根據(jù)你所提出問題的質(zhì)量,以及解決所提出問題的情況進(jìn)行分層評(píng)分】

查看答案和解析>>

同步練習(xí)冊(cè)答案