【題目】函數(shù)f(x)=滿足:對任意的實(shí)數(shù)x1≠x2,都有(x1-x2)[f(x1)-f(x2)]>0成立,則實(shí)數(shù)a的取值范圍是(。
A. B. C. D.
【答案】C
【解析】
判斷函數(shù)是增函數(shù),函數(shù)在(-∞,1)上是增函數(shù),在(1,+∞)上也是增函數(shù),且有-12+2a×1≤(2a-1)×1-3a+6,從而可得一不等式組,解出即可.
因為函數(shù)f(x)=滿足:對任意的實(shí)數(shù)x1≠x2,
都有(x1-x2)[f(x1)-f(x2)]>0成立,
所以函數(shù)f(x)在(-∞,+∞)上是增函數(shù),
所以f(x)在(-∞,1),(1,+∞)上均單調(diào)遞增,
且-12+2a×1≤(2a-1)×1-3a+6,
故有,
解得1≤a≤2.
所以實(shí)數(shù)a的取值范圍是[1,2].
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進(jìn)行測試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標(biāo)準(zhǔn)差;
(2)比較兩個人的成績,然后決定選擇哪名學(xué)生參加射箭比賽.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),且左、右焦點(diǎn)分別為F1、F2 , 這兩條曲線在第一象限的交點(diǎn)為P,△PF1F2 是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1、e2 , 則e1e2 的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)的值域為[0,+∞),求實(shí)數(shù)a的取值范圍;
(2)若關(guān)于x的不等式F(x)>af(x)+12恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若m=0,求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的值域為R,求實(shí)數(shù)m的取值范圍;
(3)若函數(shù)f(x)在區(qū)間上是增函數(shù),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓: 的離心率,短軸右端點(diǎn)為, 為線段的中點(diǎn).
(Ⅰ) 求橢圓的方程;
(Ⅱ)過點(diǎn)任作一條直線與橢圓相交于兩點(diǎn),試探究在軸上是否存在定點(diǎn),使得,若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,則“3<m<5”是“輸出i的值為5”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財投資,根據(jù)長期收益率市場預(yù)測,投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】菜農(nóng)定期使用低害殺蟲農(nóng)藥對蔬菜進(jìn)行噴灑,以防止害蟲的危害,但蔬菜上市時蔬菜仍存有少量的殘留農(nóng)藥,食用時需要用清水清洗干凈,下表是用清水(單位:千克)清洗蔬菜1千克后,蔬菜上殘留的農(nóng)藥(單位:微克)的統(tǒng)計表:
1 | 2 | 3 | 4 | 5 | |
58 | 54 | 39 | 29 | 10 |
(1)在答題紙的坐標(biāo)系中,描出散點(diǎn)圖,并判斷變量與是正相關(guān)還是負(fù)相關(guān);
(2)若用解析式作為蔬菜農(nóng)藥殘量與用水量的回歸方程,令,計算平均值與,完成以下表格(填在答題卡中),求出與的回歸方程.(, 保留兩位有效數(shù)字):
1 | 4 | 9 | 16 | 25 | |
58 | 54 | 39 | 29 | 10 | |
(3)對于某種殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量低于20微克時對人體無害,為了放心食用該蔬菜,請評估需要用多少千克的清水清洗一千克蔬菜?(精確到0.1,參考數(shù)據(jù))(附:對于一組數(shù)據(jù), ,……, ,其回歸直線的斜率和截距的最小二乘法估計分別為: , )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com