【題目】設(shè)函數(shù)的定義域為R,的極大值點,以下結(jié)論一定正確的是________

,

的極小值點;

的極小值點;

的極小值點.

【答案】

【解析】

①不妨設(shè)函數(shù),則的極大值點,但排除①;②取,則極大值點,但不是的極小值點,排除②;③,不是極大值點,排除③;④的圖象與的圖象關(guān)于原點對稱,由函數(shù)圖象的對稱性可得應(yīng)為的,極小值點,④正確,故答案為④.

方法點睛】本題主要考查函數(shù)的極值、排除法作判斷題,屬于難題.排除法做判斷題是高中數(shù)學(xué)一種常見的解題思路和方法,這種方法即可以提高做題速度和效率,又能提高準(zhǔn)確性,這種方法主要適合下列題型:(1)求值問題(可將選項逐個驗證);(2)求范圍問題(可在選項中取特殊值,逐一排除);(3)圖象問題(可以用函數(shù)性質(zhì)及特殊點排除);(4)抽象函數(shù)性質(zhì)的判斷,可以抽象函數(shù)具體化作出判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=12,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過樣本點的中心(,

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量a=(sinx-1,1),b=(sinx+3,1),c=(-1,-2),d=(k,1),k∈R.

(1)若x∈[-,],且a∥(bc),求x的值;

(2)若存在x∈R,使得(ad)⊥(bc),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右頂點分別是,,點在橢圓上,過該橢圓上任意一點P軸,垂足為Q,點C的延長線上,且

1)求橢圓的方程;

2)求動點C的軌跡E的方程;

3)設(shè)直線C點不同A、B)與直線交于RD為線段的中點,證明:直線與曲線E相切;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某地出土的一種“釘”是由四條線段組成,其結(jié)構(gòu)能使它任意拋至水平面后,總有一端所在的直線豎直向上.并記組成該“釘”的四條等長的線段公共點為,釘尖為

(1)判斷四面體的形狀,并說明理由;

(2)設(shè),當(dāng)在同一水平面內(nèi)時,求與平面所成角的大。ńY(jié)果用反三角函數(shù)值表示);

(3)若該“釘”著地后的四個線段根據(jù)需要可以調(diào)節(jié)與底面成角的大小,且保持三個線段與底面成角相同,若,,問為何值時,的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),有下列結(jié)論,其中正確的是(

A.其圖象關(guān)于y軸對稱;

B.的最小值是;

C.當(dāng)時,是增函數(shù);當(dāng)時,是減函數(shù);

D.的增區(qū)間是,;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題共分)

,則稱的一個位排列,對于,將排列記為,將排列記為,依此類推,直至,對于排列,它們對應(yīng)位置數(shù)字相同的個數(shù)減去對應(yīng)位置數(shù)字不同的數(shù),叫做的相關(guān)值,記作,例如,則,,若,則稱為最佳排列.

(Ⅰ)寫出所有的最佳排列

(Ⅱ)證明:不存在最佳排列

(Ⅲ)若某個是正整數(shù))為最佳排列,求排列的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1,曲線C2

1)指出C1,C2各是什么曲線,并說明C1C2公共點的個數(shù);

2)若把C1C2上各點的縱坐標(biāo)都壓縮為原來的一半,分別得到曲線.寫出,的參數(shù)方程.公共點的個數(shù)和C1C2公共點的個數(shù)是否相同?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)兩種產(chǎn)品,生產(chǎn)每產(chǎn)品所需的勞動力和煤、電消耗如下表:

產(chǎn)品品種

勞動力(個)

已知生產(chǎn)產(chǎn)品的利潤是萬元,生產(chǎn)產(chǎn)品的利潤是萬元.現(xiàn)因條件限制,企業(yè)僅有勞動力個,煤,并且供電局只能供電,則企業(yè)生產(chǎn)、兩種產(chǎn)品各多少噸,才能獲得最大利潤?

查看答案和解析>>

同步練習(xí)冊答案