如圖,甲船以每小時海里的速度向正北方航行,乙船按固定方向勻速直線航行,當甲船位于處時,乙船位于甲船的北偏西方向的處,此時兩船相距海里,當甲船航行分鐘到達處時,乙船航行到甲船的北偏西方向的處,此時兩船相距海里,問乙船每小時航行多少海里?

解析試題分析:根據(jù)題意,觀察圖形,連接,由甲船航行的速度與時間算出,發(fā)現(xiàn)為等邊三角形,可得,,又已知的長,那么在中,由余弦定理求出的值,因為乙船與甲船航行的時間相同,從而求出乙船的速度.
試題解析:如圖,連結(jié),由已知,

,

是等邊三角形,     4分


由已知,,
,        6分
中,由余弦定理,


          9分
因此,乙船的速度的大小為(海里/小時)     11分
答:乙船每小時航行海里     12分
考點:解三角形在實際問題中的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

中,角所對的邊分別為,且,.
(1)求的值;
(2)若,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的最小值及單調(diào)減區(qū)間;
(2)在中,分別是角的對邊,且,,且,求,c的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,海上有兩個小島相距10,船O將保持觀望A島和B島所成的視角為,現(xiàn)從船O上派下一只小艇沿方向駛至處進行作業(yè),且.設。

(1)用分別表示,并求出的取值范圍;
(2)晚上小艇在處發(fā)出一道強烈的光線照射A島,B島至光線的距離為,求BD的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設三角形ABC的內(nèi)角所對的邊長分別為,,且.
(Ⅰ)求角的大小;
(Ⅱ)若AC=BC,且邊上的中線的長為,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,分別為內(nèi)角A,B,C所對的邊長,.
(1)求角B的大小。
(2)若的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,邊、、分別是角、的對邊,且滿足.
(1)求;
(2)若,,求邊,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知a,b,c分別為△ABC的三個內(nèi)角A,B,C的對邊,=(sinA,1),=(cosA,),且
(1)求角A的大。
(2)若a=2,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,內(nèi)角所對的邊長分別為,,.
求sinC和b的值.

查看答案和解析>>

同步練習冊答案