【題目】已知{an}為等差數(shù)列,前n項和為SnnN*),{bn}是首項為2的等比數(shù)列,且公比大于0b2+b312b3a42a1,S1111b4

(Ⅰ)求{an}{bn}的通項公式;

(Ⅱ)求數(shù)列{anbn}的前n項和為TnnN*).

【答案】(Ⅰ)an3n2bn2n;(Ⅱ)Tn=(6n72n+4

【解析】

1)根據(jù)題意,用等差數(shù)列和等比數(shù)列的基本量解方程,從而計算出數(shù)列的公差和公比即可求得通項公式;

2)根據(jù)通項公式的特點,選用錯位相減法求數(shù)列的前項和.

(Ⅰ)由題意,設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q,則q0

2q1+q)=12,解得q2

由題意,得,解得

an1+3n1)=3n2;bn22n12n

(Ⅱ)由(Ⅰ)知,anbn=(3n22n

Tna1b1+a2b2+…+anbn12+422+…+3n22n,①

2Tn122+423+…+3n52n+3n22n+1,②

①﹣②,得﹣Tn12+322+323+…+32n﹣(3n22n+1

2+62++…+2n1)﹣(3n22n+1

2+63n22n+1

=(106n2n10

Tn=(6n102n+10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題14分)

如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PAD平面ABCD,PAPDPA=PD,E,F分別為AD,PB的中點.

(Ⅰ)求證:PEBC

(Ⅱ)求證:平面PAB平面PCD;

(Ⅲ)求證:EF平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線過點和橢圓的焦點且方向向量為,且橢圓的中心關(guān)于直線的對稱點在直線.

1)求橢圓的方程;

2)是否存在過點的直線交橢圓于點、,且滿足為原點)?若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩家公司都需要招聘求職者,這兩家公司的聘用信息如下:

甲公司

乙公司

職位

A

B

C

D

職位

A

B

C

D

月薪/元

6000

7000

8000

9000

月薪/元

5000

7000

9000

11000

獲得相應(yīng)職位概率

0.4

0.3

0.2

0.1

獲得相應(yīng)職位概率

0.4

0.3

0.2

0.1

(1)根據(jù)以上信息,如果你是該求職者,你會選擇哪一家公司?說明理由;

(2)某課外實習(xí)作業(yè)小組調(diào)查了1000名職場人士,就選擇這兩家公司的意愿做了統(tǒng)計,得到以下數(shù)據(jù)分布:

選擇意愿

人員結(jié)構(gòu)

40歲以上(含40歲)男性

40歲以上(含40歲)女性

40歲以下男性

40歲以下女性

選擇甲公司

110

120

140

80

選擇乙公司

150

90

200

110

若分析選擇意愿與年齡這兩個分類變量,計算得到的K2的觀測值為k15.5513,測得出選擇意愿與年齡有關(guān)系的結(jié)論犯錯誤的概率的上限是多少?并用統(tǒng)計學(xué)知識分析,選擇意愿與年齡變量和性別變量哪一個關(guān)聯(lián)性更大?

附:

0.050

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四面體PABC的外接球的球心OAB上,且PO⊥平面ABC2ACAB,若四面體PABC的體積為,則該球的體積為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,是橢圓上的動點,且點到橢圓焦點的距離的最小值為1.

1)求橢圓的方程;

2)過橢圓的右焦點的直線交橢圓,兩點,當時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,的中點,將沿直線翻折成,連結(jié),的中點,則在翻折過程中,下列說法中所有正確的是(

A.存在某個位置,使得

B.翻折過程中,的長是定值

C.,則

D.,當三棱錐的體積最大時,三棱錐的外接球的表面積是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)院治療白血病有甲、乙兩套方案,現(xiàn)就70名患者治療后復(fù)發(fā)的情況進行了統(tǒng)計,得到其等高條形圖如圖所示(其中采用甲、乙兩種治療方案的患者人數(shù)之比為

(1)補充完整列聯(lián)表中的數(shù)據(jù),并判斷是否有把握認為甲乙兩套治療方案對患者白血病復(fù)發(fā)有影響;

復(fù)發(fā)

未復(fù)發(fā)

總計

甲方案

乙方案

2

總計

70

(2)為改進“甲方案”,按分層抽樣組成了由5名患者構(gòu)成的樣本,求隨機抽取2名患者恰好是復(fù)發(fā)患者和未復(fù)發(fā)患者各1名的概率.

附:

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若,求的最大值;

(2)當時,求證:.

查看答案和解析>>

同步練習(xí)冊答案