已知雙曲線-=1的焦點為F1、F2,點M在雙曲線上,且MF1⊥x軸,則F1到直線F2M的距離為(    )

A.            B.           C.             D.

C


解析:

設(shè)F1為右焦點,c2=6+3=9.

∴F1(3,0).

令x=3,代入雙曲線方程得y=(只取正值).

∴M(3,).

又F2(-3,0),

由兩點式求出直線F2M:x-2y+3=0.

∴點F1到直線F2M的距離d=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
9
-
y2
16
=1
的左、右焦 點分別為F1、F2,P為C的右支上一點,且|
PF2
|=|
F1F2
|,則△PF1F2
的面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
cos2θ
-
y2
sin2θ
=1
(θ為銳角)的右焦為F,P是右支上任意一點,以P為圓心,PF長為半徑的圓在右準(zhǔn)線上截得的弦長恰好等于|PF|,則θ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省高三第一次月考文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)已知橢圓的方程為 ,雙曲線的左、右焦

 

點分別是的左、右頂點,而的左、右頂點分別是的左、右焦點.

(1)求雙曲線的方程;                                             

(2)若直線與雙曲線C2恒有兩個不同的交點A和B,求的范圍。

 

查看答案和解析>>

同步練習(xí)冊答案